生成式模型实现的区别——VAE、GAN、Diffusion和transformer

生成式模型的表象就是从训练数据的数学分布中学习规律,然后生成新的相似的数据样本。

在之前的文章中虽然也介绍过生成式模型,但更多的是从非技术的角度理解什么是生成式模型;而今天我们来学习一下,生成式模型的实现。

生产式模型

什么是生成式模型?

从专业的角度来说,生成模型是一类能学习数据分布并生成新样本的机器学习模型;通过捕捉训练数据的数学关系,创建出与真实数据相似但从未出现过的新示例。

生成式模型的原理

生成模型的工作原理是通过学习训练数据在数学上的统计规律和结构特征,构建一个能够描述数据分布的模型,然后利用这个模型生成新的数据样本;这些样本在统计特性上与原始训练数据相似,但内容却是全新的。

生成模型的主要应用

生成模型的主要应用非常广泛,涵盖了从艺术创作到数据科学等多个领域。以下是一些关键的应用实例:

  • 图像生成:生成模型可以用来创建新的图像,这些图像在视觉上与真实图像无法区分,应用于艺术创作、游戏设计、虚拟现实等。

  • 风格迁移:在艺术领域,生成模型可以将一种艺术风格应用到另一幅图像上,实现风格转换。

  • 数据增强:在机器学习中,生成模型可以用来增加训练数据集的多样性,提高模型的泛化能力,尤其在数据稀缺的情况下非常有用。

  • 图像修复和超分辨率:通过学习图像的低频和高频特征,生成模型可以用于修复损坏的图像或提高图像的分辨率。

  • 文本生成:生成模型可以用于生成文章、诗歌、对话等自然语言文本,应用于聊天机器人、内容创作等领域。

  • 语音合成:在音频处理领域,生成模型可以合成新的语音片段,用于语音识别系统的训练或虚拟助手的声音生成。

  • 游戏开发:在游戏设计中,生成模型可以用于自动生成游戏环境、关卡设计或非玩家角色(NPC)的行为模式。

  • 医学成像:生成模型可以帮助生成医学成像数据,用于增强诊断的准确性或在训练医疗影像分析算法时提供额外数据。

  • 增强现实(AR)和虚拟现实(VR):生成模型可以创建逼真的虚拟环境和对象,提升AR和VR体验的真实感。

  • 模拟和预测:在科学研究和工程领域,生成模型可以模拟复杂系统的行为,用于预测和决策支持。

常见的生成式模型有自回归模型,变分自编码器(VAE),生成对抗网络(GANs)和扩散模型(Diffusion Model)等。

生成对抗网络——GANs

GANs由两个主要部分组成:生成器(Generator)和判别器(Discriminator)。生成器负责从随机噪声中生成数据,试图欺骗判别器;而判别器则尝试区分真实数据和生成数据。两者通过对抗性训练不断优化,最终生成器能够生成逼真的数据。

变分自编码器——VAEs

变分自编码器(Variational Autoencoders, VAEs)是生成式AI的另一核心技术。VAEs通过引入概率模型和变分推断,解决了传统自编码器在生成新数据时的局限性。VAEs在图像生成、数据降维和异常检测等方面具有重要应用。

传统自编码器(Autoencoders)通过编码器(Encoder)将输入数据压缩成潜在表示,再通过解码器(Decoder)重建输入数据。然而,传统自编码器在生成新数据时存在局限,因为其潜在空间并未显式建模概率分布。

变分自编码器的原理

变分自编码器(VAEs)通过引入概率建模,解决了传统自编码器的生成问题。其核心思想是将输入数据映射到一个已知分布(通常是高斯分布)的潜在空间,并通过最大化证据下界(ELBO)进行优化。

自回归模型——Autoregressive Models

自回归模型(Autoregressive Models)是生成式AI中的一个重要类别,通过建模数据序列中的条件依赖关系,自回归模型能够逐步生成序列数据,如文本、音频和图像。自回归模型在自然语言处理、语音生成和图像生成等领域有着广泛的应用。

自回归模型是一种统计模型,用于描述数据序列中的依赖关系。其基本思想是当前时刻的数据依赖于之前时刻的数据。在生成式AI中,自回归模型通过逐步预测下一个数据点,从而生成整个序列

最简单的自回归模型是线性自回归模型(Autoregressive Integrated Moving Average, ARIMA),其假设当前时刻的数据是之前数据的线性组合。对于生成式AI,我们通常使用更复杂的深度学习模型,如循环神经网络(RNNs)、长短期记忆网络(LSTMs)和变换模型(Transformers)

Transformers的基本概念

注意力机制

Transformers的核心在于其注意力机制,尤其是自注意力机制(Self-Attention)。注意力机制允许模型在处理每个输入时关注整个输入序列,从而捕捉到全局依赖关系。具体来说,自注意力机制计算输入序列中每个元素与其他元素之间的相关性,然后基于这些相关性进行加权求和,从而生成新的表示。

跨模态生成

Transformers在跨模态生成任务中表现出色,如OpenAI的DALL-E模型。DALL-E通过将文本描述转换为图像,展示了Transformers在处理多模态数据方面的强大能力。该模型能够生成高质量的图像,广泛应用于艺术创作、广告设计和内容生成等领域 。

思考一个问题,Transformer模型架构是生成式模型吗?

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值