“ 生成式模型的表象就是从训练数据的数学分布中学习规律,然后生成新的相似的数据样本。”
在之前的文章中虽然也介绍过生成式模型,但更多的是从非技术的角度理解什么是生成式模型;而今天我们来学习一下,生成式模型的实现。
生产式模型
什么是生成式模型?
从专业的角度来说,生成模型是一类能学习数据分布并生成新样本的机器学习模型;通过捕捉训练数据的数学关系,创建出与真实数据相似但从未出现过的新示例。
生成式模型的原理
生成模型的工作原理是通过学习训练数据在数学上的统计规律和结构特征,构建一个能够描述数据分布的模型,然后利用这个模型生成新的数据样本;这些样本在统计特性上与原始训练数据相似,但内容却是全新的。
生成模型的主要应用
生成模型的主要应用非常广泛,涵盖了从艺术创作到数据科学等多个领域。以下是一些关键的应用实例:
-
图像生成:生成模型可以用来创建新的图像,这些图像在视觉上与真实图像无法区分,应用于艺术创作、游戏设计、虚拟现实等。
-
风格迁移:在艺术领域,生成模型可以将一种艺术风格应用到另一幅图像上,实现风格转换。
-
数据增强:在机器学习中,生成模型可以用来增加训练数据集的多样性,提高模型的泛化能力,尤其在数据稀缺的情况下非常有用。
-
图像修复和超分辨率:通过学习图像的低频和高频特征,生成模型可以用于修复损坏的图像或提高图像的分辨率。
-
文本生成:生成模型可以用于生成文章、诗歌、对话等自然语言文本,应用于聊天机器人、内容创作等领域。
-
语音合成:在音频处理领域,生成模型可以合成新的语音片段,用于语音识别系统的训练或虚拟助手的声音生成。
-
游戏开发:在游戏设计中,生成模型可以用于自动生成游戏环境、关卡设计或非玩家角色(NPC)的行为模式。
-
医学成像:生成模型可以帮助生成医学成像数据,用于增强诊断的准确性或在训练医疗影像分析算法时提供额外数据。
-
增强现实(AR)和虚拟现实(VR):生成模型可以创建逼真的虚拟环境和对象,提升AR和VR体验的真实感。
-
模拟和预测:在科学研究和工程领域,生成模型可以模拟复杂系统的行为,用于预测和决策支持。
常见的生成式模型有自回归模型,变分自编码器(VAE),生成对抗网络(GANs)和扩散模型(Diffusion Model)等。
生成对抗网络——GANs
GANs由两个主要部分组成:生成器(Generator)和判别器(Discriminator)。生成器负责从随机噪声中生成数据,试图欺骗判别器;而判别器则尝试区分真实数据和生成数据。两者通过对抗性训练不断优化,最终生成器能够生成逼真的数据。
变分自编码器——VAEs
变分自编码器(Variational Autoencoders, VAEs)是生成式AI的另一核心技术。VAEs通过引入概率模型和变分推断,解决了传统自编码器在生成新数据时的局限性。VAEs在图像生成、数据降维和异常检测等方面具有重要应用。
传统自编码器(Autoencoders)通过编码器(Encoder)将输入数据压缩成潜在表示,再通过解码器(Decoder)重建输入数据。然而,传统自编码器在生成新数据时存在局限,因为其潜在空间并未显式建模概率分布。
变分自编码器的原理
变分自编码器(VAEs)通过引入概率建模,解决了传统自编码器的生成问题。其核心思想是将输入数据映射到一个已知分布(通常是高斯分布)的潜在空间,并通过最大化证据下界(ELBO)进行优化。
自回归模型——Autoregressive Models
自回归模型(Autoregressive Models)是生成式AI中的一个重要类别,通过建模数据序列中的条件依赖关系,自回归模型能够逐步生成序列数据,如文本、音频和图像。自回归模型在自然语言处理、语音生成和图像生成等领域有着广泛的应用。
自回归模型是一种统计模型,用于描述数据序列中的依赖关系。其基本思想是当前时刻的数据依赖于之前时刻的数据。在生成式AI中,自回归模型通过逐步预测下一个数据点,从而生成整个序列
最简单的自回归模型是线性自回归模型(Autoregressive Integrated Moving Average, ARIMA),其假设当前时刻的数据是之前数据的线性组合。对于生成式AI,我们通常使用更复杂的深度学习模型,如循环神经网络(RNNs)、长短期记忆网络(LSTMs)和变换模型(Transformers)
Transformers的基本概念
注意力机制
Transformers的核心在于其注意力机制,尤其是自注意力机制(Self-Attention)。注意力机制允许模型在处理每个输入时关注整个输入序列,从而捕捉到全局依赖关系。具体来说,自注意力机制计算输入序列中每个元素与其他元素之间的相关性,然后基于这些相关性进行加权求和,从而生成新的表示。
跨模态生成
Transformers在跨模态生成任务中表现出色,如OpenAI的DALL-E模型。DALL-E通过将文本描述转换为图像,展示了Transformers在处理多模态数据方面的强大能力。该模型能够生成高质量的图像,广泛应用于艺术创作、广告设计和内容生成等领域 。
思考一个问题,Transformer模型架构是生成式模型吗?
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈