最近有没有在小红书上刷到类似的高赞视频,言辞睿智而犀利,画面简约而脱俗,简单的黑白画面,直戳人心的辛辣点评,真是暴足了广大群众的胃口!
那么这么一个视频是怎么做的呢?自己花两小时剪辑、配音?NO,用扣子,一条四五十秒的视频只要一两分钟就可以搞定!
扣子做的视频案例:AI时代人类可以躺平吗?
今天我就带领大家step by step 创建这么一条deepseek r1 + 画板 + 视频合成插件的实用工作流吧!让大伙也能在2025“重启人生”!
扣子做的视频案例:时间的赌徒!
PS:之前分享的许多扣子智能体或着应用基本都涉及到少许代码节点,遭到大家的吐槽,这次我“洗心革面”
全套工作流没有一个代码节点,大家放心“食”用😂
一.前置条件和准备:
1.了解扣子平台,对工作流有初步认知
2.需要注册一个视频合成插件(有免费额度,不够可以自行充值)
3.了解工作流中节点调用规则
二.总体流程
1.通过扣子提供的deepseek r1 模型撰写文案
2.通过文本处理节点对文本内容进行分割
3.用扣子的图像生成节点及画布进行图片绘制和模版生成
4.通过扣子音频插件对文案生成音频
5.通过扣子上的视频生成、合并插件合成最终视频
总体工作流情况:
关键节点10个:
1.大模型节点
2.文本处理节点
3.图像生成节点
4.抠图节点
5.批处理节点
6.选择器节点
7.画板节点
8.音频插件
9.视频生成插件
10.视频合并插件
三.详细工作流细节内容
1.开始节点:入参img_prompt、left_top_txt、right_top_txt、bottom_txt、image_back_txt(接收图像描述、左上角文字、右上角文字、底部文字、图像背景文字)
2.大模型节点:接入DeepSeek-R1模型(生成文案出色),设计系统提示词、输入提示词
3.文本处理节点:将大模型生成的文案进行分割分段,处理成文本数组
4.图像生成节点:将开始节点的描述词作为入参,调用通用图像、Logo设计,提示词为极简黑色线条绘画风格
5.抠图节点:用扣图节点将图像生成节点生成的内容去掉背景
6.用批处理节点:对文本分割后的数组进行批处理(注意并发不能选过大,否则会报错,建议4以下)
7.批处理内部(选择器节点):把数据异常为空的过滤掉(避免在后面视频处理中报错)
8.批处理内部(画板节点):布局好画板位置,将开始节点中的左上角、右上角、底部、图片背景文字固定好,然后将批处理的文本链接到video_txt正文即可
9.批处理内部(音频插件节点):调用扣子语音合成插件,对文本进行声音合成
10.批处理内部(图像、音频合成插件节点):填入自己在插件平台注册的api_token即可,分别再引入前面的音频、图像内容即可
11.视频合并插件节点:最后将批处理后的视频数组作为入参,填写自己的api_token就可以啦!
整个工作流和步骤就是这些,赶紧去试试!用上目前最热、最火的deepseek r1模型,你也能搭建一条全自动文案、视频生成工作流啦!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。