Nature最新!AI药物发现:从35亿化合物中快速筛选目标分子成本减少1000倍

img

研究背景

1.研究问题:这篇文章要解决的问题是如何在化学空间中进行快速遍历,特别是针对包含数十亿化合物的数据库进行虚拟筛选。

2.研究难点:该问题的研究难点包括:多亿规模的化学库难以被现有的最快基于结构的对接方法所筛选;计算资源需求巨大,即使是基于结构的虚拟筛选也难以承受。

3.相关工作:该问题的研究相关工作包括基于结构的虚拟筛选方法、量子化学算法、以及最近在早期药物发现中成功应用的人工智能技术(如梯度提升、深度神经网络和Transformer)。

研究方法

这篇论文提出了一种结合机器学习和分子对接的策略,用于快速虚拟筛选包含数十亿化合物的数据库。

img

具体来说,

1.分类算法训练:首先,使用100万种化合物对目标蛋白进行分子对接,训练一个分类算法来识别得分最高的化合物。这里使用了CatBoost分类器,因为它在速度和准确性之间达到了最佳平衡。

2.共形预测框架:然后,使用共形预测框架从数十亿规模的库中进行选择,减少需要对接的化合物数量。共形预测框架允许用户控制预测的错误率,并且适用于处理不平衡数据集。

3.优化工作流程:为了优化超大规模库的性能,进一步分析了包含2.35亿化合物的ZINC15库的数据集,重点关注两个基准蛋白(A2AR和D2R)。通过调整显著性水平,控制预测的虚拟活性集的大小。

公式解释:(详见原始文章)

实验设计

1.数据收集:从Enamine REAL数据库中随机抽取1500万种化合物进行分子对接,针对八个治疗相关蛋白进行基准测试。

2.样本选择:从Enamine REAL数据库中随机抽取100万种化合物作为训练集,标记为虚拟活性和非活性。

3.参数配置:使用CatBoost分类器,基于Morgan2指纹进行训练。显著性水平设置为0.005,以减少计算成本。

结果与分析

1.基准测试结果:通过对八个蛋白靶标的基准测试,评估了共形预测框架的性能。CatBoost分类器在速度和准确性之间达到了最佳平衡,且计算资源需求最少。

img

2.优化结果:在ZINC15库的2.35亿化合物中,通过调整显著性水平,将库大小从2.34亿减少到2500万(A2AR)和1900万(D2R),同时保持高灵敏度值(0.87和0.88)。

3.前瞻性虚拟筛选结果:对35亿化合物进行前瞻性虚拟筛选,显著降低了计算成本。通过质量信息优先级排序,进一步减少了对接的化合物数量,最终合成了31种化合物,其中两种显示出显著的放射性配体置换和亲和力值。

img

总体结论

这篇论文提出了一种结合机器学习和分子对接的策略,能够高效地进行数十亿规模化学库的虚拟筛选。通过共形预测框架和CatBoost分类器的结合,显著减少了计算成本,并在多目标配体的发现中取得了成功。该方法不仅提高了虚拟筛选的效率,还为复杂疾病的治疗提供了新的药物发现途径。

img

优点与创新

1.大规模化学库的快速遍历:论文提出了一种结合机器学习和分子对接的策略,能够对包含数十亿化合物的数据库进行快速虚拟筛选。

2.高效的分类算法:使用CatBoost分类器在速度和准确性之间取得了最佳平衡,并适应了超大规模库的筛选工作。

3.显著的计算成本降低:应用于一个包含35亿化合物的库,该协议能够将基于结构的虚拟筛选的计算成本减少超过1000倍。

4.多靶点活性化合物的发现:实验测试识别了G蛋白偶联受体的配体,展示了该方法能够发现具有多靶点活性的化合物,适用于治疗效果。

5.多种分子描述符的使用:结合了Morgan2指纹、连续数据驱动描述符(CDDD)和基于预训练RoBERTa模型的Transformer描述符,展示了不同描述符在虚拟筛选中的应用效果。

6.共形预测框架的应用:利用共形预测框架来控制预测误差率,确保少数类和多数类的有效性。

7.实验验证:对合成的化合物进行了实验评估,验证了预测结果的实际应用潜力。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值