全文速览
本文综述了大型语言模型(LLMs)和自主智能体在化学领域的应用,探讨了它们在分子设计、性质预测和合成优化中的潜力。文章回顾了LLMs在化学中的发展历程,讨论了其在自动化科学发现中的应用,并提出了未来发展方向。通过分析LLMs的架构、训练方法和在化学中的具体应用,文章展示了这些技术如何加速科学发现并推动化学研究的创新。
背景介绍
化学领域中,机器学习(ML)和人工智能(AI)的应用已有数十年历史。从20世纪50年代的量子化学和分子建模,到80年代的专家系统(如DENDRAL),再到90年代的神经网络和高通量筛选(HTS)时代,AI在化学中的应用不断演进。近年来,深度学习尤其是大型语言模型(LLMs)的发展为化学研究带来了新的机遇。LLMs通过处理和理解化学语言(如SMILES表示法),能够进行分子设计、性质预测和合成路径规划等任务,极大地推动了化学研究的自动化和创新。
图文解析
图1:AI加速化学发现。图1展示了AI在化学中的三个主要应用领域:性质预测、性质导向的分子生成和合成预测。这三个领域相互关联,并与自动化任务紧密相连。性质预测是通过模型预测化合物的特定性质,以决定是否合成该化合物用于特定应用。性质导向的分子生成是根据所需的化学性质或活性生成新的分子结构。合成预测则是预测目标分子的最佳合成路径,包括反应条件和起始材料的选择。这些任务的自动化是化学研究中的一个重要方向,能够显著提高研究效率。
图2:Transformer架构。图2详细介绍了Transformer架构的四个关键模块:编码器、解码器、自注意力机制和前馈神经网络。编码器将输入序列转换为向量表示,解码器则基于编码器的输出生成输出序列。自注意力机制允许模型在处理序列时关注序列中的不同部分,从而更好地捕捉上下文信息。前馈神经网络进一步处理编码器的输出,增强模型对输入数据的理解。这种架构特别适合处理序列数据,如化学反应中的分子结构。
图3:LLMs在化学中的分类。图3将LLMs在化学中的应用分为三类:基于文本的输入/输出(text-based)和基于分子的输入/输出(mol-based)。text-based LLMs主要处理自然语言描述,而mol-based LLMs则直接处理化学分子的表示(如SMILES字符串)。这种分类有助于理解不同类型的LLMs在化学研究中的具体应用,例如在分子设计和合成预测中的应用。
图4:LLMs在化学中的发展历程。图4展示了LLMs在化学领域的发展历程,包括从早期的RNN到现代的Transformer架构的演变。图中强调了不同架构(如RNN、LSTM、GRU、Transformer)在处理化学数据时的优势和局限性。例如,RNN在处理长序列时容易出现梯度消失或爆炸的问题,而Transformer架构通过自注意力机制克服了这一限制,能够更有效地处理复杂的化学序列数据。
图5:化学数据集与LLMs训练数据的对比。图5比较了常见化学数据集与用于训练LLaMA2的训练数据的规模。图中显示,尽管化学领域的数据集(如ZINC、PubChem)包含大量分子结构数据,但与用于训练LLaMA2的万亿级文本数据相比,化学数据集的规模仍然较小。这表明化学领域需要更多高质量的数据来训练更强大的LLMs。
图6:自主智能体的架构。图6展示了自主智能体的架构,包括核心的LLM、环境、工具和智能体模块。智能体通过感知模块接收环境的输入,利用LLM和智能体模块(如记忆、规划、推理等)进行决策,并通过工具与环境交互。这种架构使得智能体能够在复杂环境中自主完成任务,如化学实验设计和数据处理。
总结展望
本文全面综述了LLMs和自主智能体在化学领域的应用,强调了这些技术在加速科学发现和推动化学研究创新方面的潜力。尽管取得了显著进展,但仍面临数据质量、模型可解释性和与实验方法的整合等挑战。未来的发展方向包括开发更复杂的多模态智能体、增强智能体与实验方法的协作以及建立更高质量的化学数据集。随着这些技术的不断发展,LLMs和自主智能体有望在化学研究中发挥更大的作用,推动化学科学的进步。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。