全文速览
本文综述了人工智能(AI)与实验室自动化在金属-有机框架(MOFs)发现和合成中的融合应用。MOFs因其可调结构和在能源存储、药物传递等领域的广泛应用而备受关注。然而,MOFs的合成过程复杂,结构多样性高,传统研究方法面临挑战。实验室自动化通过机器人技术和软件控制系统,提高了实验效率、准确性和一致性。AI,特别是Transformer和大型语言模型(LLMs),通过分析大量数据集、预测材料性质和指导实验设计,进一步推动了MOF研究的发展。自驱动实验室(SDLs)的出现,将AI驱动的决策与自动化实验相结合,成为MOF研究的新前沿。
背景介绍
MOFs作为一种具有独特可调性、极高比表面积和广泛应用前景的材料,在能源存储、药物传递和环境修复等领域展现出巨大潜力。然而,MOFs的合成过程复杂,结构多样性高,传统研究方法难以高效探索其庞大的参数空间,限制了发现和优化新MOF材料的速度和质量。实验室自动化技术的发展,使得高通量实验(HTE)成为可能,通过同时执行多个实验,显著提高了实验效率和数据获取速度。AI技术的引入,尤其是Transformer和LLMs,进一步增强了MOF研究的能力,通过分析大量数据、预测材料性质和指导实验设计,加速了MOF材料的发现和优化过程。
图文解析
图1:展示了实验室自动化和AI在MOFs领域的应用概览。图中包括了自动化合成工作站、表征设备、数据采集与分析系统等关键组件,以及它们如何通过AI算法进行集成和优化。自动化合成工作站通过高精度机器人执行复杂的操作,如固体和液体样品的添加和转移。表征设备经过自动化改造,显著提高了样品处理的效率和一致性。数据采集与分析系统通过自动化的实验数据收集、存储、分析和报告生成,进一步提升了实验效率和准确性。
图2:展示了MOF材料的典型高通量合成方法,包括溶剂热合成、喷涂法、浸渍法、微流控技术、3D打印和机械研磨法。每种方法都有其独特的优点和应用场景。例如,溶剂热合成通过多通道平行组合技术,实现了多个反应条件的同步调整和正交实验的快速执行。喷涂法和浸渍法通过层-by-层的组装过程,在表面功能化的基底上培养SURMOFs。微流控技术通过精确控制小体积液体,实现了MOF单晶的高通量合成。3D打印技术允许MOF材料的复杂几何结构的高精度和可控制造。机械研磨法通过离心管研磨技术,实现了MOF的快速高效合成。
图3:展示了MOF材料的典型高通量表征技术,包括红外检测、核磁共振(NMR)和透射电子显微镜(TEM)。红外检测通过光学检测吸附热,实现了对多孔材料的快速筛选。NMR技术通过质子弛豫行为,预测了MOF的孔隙率和比表面积。TEM技术通过自动化的样品制备和数据采集,加速了MOF的表征过程,提供了关于纳米晶体的全面信息,补充了X射线衍射对较大晶体的结晶性和相的评估。
图4:展示了高通量多组分吸附仪器的工作原理和应用。该仪器通过共享气体分配歧管和多位置阀连接到残气分析仪(RGA),实现了对多达28个样品的同时测量。在多组分测量中,通过注入气体混合物并扩展到主反应器中,记录平衡压力。该方法显著加速了高性能吸附剂的筛选和优化,对工业排放中的碳捕获技术具有重要意义。
图5:展示了MOFormer的工作流程和内部结构。MOFormer采用了Transformer编码器部分,并对输入的MOFid进行了特定的标记化处理。通过与CGCNN模型的联合预训练,MOFormer在预测MOF的物理性质方面表现出色,尤其是在量子化学性质方面。图中还展示了不同模型在QMOF和hMOF数据集上的数据效率比较,MOFormer在训练集大小≤1000时,比CGCNN更数据高效。
图6:展示了MOFTransformer的整体架构和预训练任务。MOFTransformer结合了原子级图嵌入和能量网格嵌入,以捕获MOF的局部和全局特征。通过三个预训练任务(MOF拓扑预测、空隙分数预测和金属簇-有机连接器分类),模型能够有效捕获和学习MOF的关键特征。在微调阶段,使用真实数据集进行训练,MOFTransformer在预测各种性质方面表现出良好的泛化能力。
图7:展示了Uni-MOF框架的预训练、数据生成和微调工作流程。Uni-MOF采用了自监督学习策略,利用大量未标记的结构数据进行预训练,增强了模型的泛化能力和下游预测性能。通过定制的数据生成过程,从多个数据库中随机采样各种参数,形成了广泛采样的数据集。在微调阶段,使用约300万个标记数据点进行训练,使模型能够准确预测MOF和COF材料在不同操作条件下的吸附容量。
图8:展示了MOFFUSION框架的总体架构和工作流程。MOFFUSION结合了3D建模、深度学习技术和注意力机制,通过Signed Distance Function(SDF)表示MOF的复杂孔隙结构。扩散模型生成新的SDF样本,并通过3D U-Net架构进行细化,以接近真实的MOF结构。MOF Constructor组件将SDF映射回相应的拓扑和构建块,最终生成实际的MOF结构。
图9:展示了ORGA系统的工作原理和模块组成。ORGA系统通过将LLMs与任务和运动规划相结合,将用户意图转化为详细的实验计划,并通过感知模块实现实验过程中的实时监控和调整。ORGA.REASONER模块由LLM驱动,将指令转化为具体的化学实验计划和目标。
总结展望
本文总结了AI和实验室自动化在MOF研究中的应用,强调了这些技术如何加速MOF材料的发现和优化。通过高通量实验和AI算法的结合,研究人员能够更高效地探索实验空间,提高实验准确性和结果的一致性。AI模型的持续反馈和优化进一步提高了预测的准确性,形成了一个自我改进的系统,加深了对MOF结构-性能关系的理解。尽管在MOF合成的自动化和高通量实验中仍面临一些挑战,如合成过程的复杂性、原料和杂质的问题、结构表征和优化的难度、设备和技术的限制,以及研发投资和经济可行性,但随着技术的进步,这些挑战有望得到解决。未来,MOF材料的研究将受益于实验室自动化的标准化、AI技术的进一步发展、云实验室的兴起以及无人试点测试的应用,这些趋势将推动MOF材料在更多领域的应用和商业化。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。