从0学AI之精调(Fine-Tuning)

在人工智能领域,精调(Fine-Tuning)是一种优化技术,它能让机器学习模型在特定任务上表现得更好。为了更好地解释这个概念,让我们先从机器学习的基础知识开始。

机器学习的基础

机器学习,简单来说,就是让计算机通过数据学习并做出决策或预测。它类似于人类学习新技能,比如学习骑自行车。一开始,你可能摔倒多次,但随着不断的练习,你逐渐掌握了平衡和技巧,最终能够熟练地骑行。机器学习也是类似的,它通过不断地“练习”(即处理数据)来提高模型的性能。

什么是预训练模型?

预训练模型是一个已经在大规模数据集上训练过的模型。它类似于一个已经学会了很多知识的学生,但还没有针对特定科目进行深入学习。预训练模型可以用于各种任务,比如文本分类、图像识别等。

为什么需要精调?

尽管预训练模型在许多任务上都能取得不错的效果,但它们并不是完美的。想象一下,你是一名医生,你已经学习了基本的医学知识,但如果你想成为一名心脏病专家,你需要更深入地学习心脏相关的知识。同样地,对于特定任务,预训练模型也需要进一步的学习和调整,这就是精调的作用。

精调是如何工作的?

精调的过程可以分为几个步骤:

选择预训练模型:首先,你需要选择一个预训练模型作为起点。这类似于选择一个已经学会了很多知识的学生。

准备数据:然后,你需要准备一些与你的任务相关的数据。这些数据将用于进一步训练模型。比如,如果你想要一个能够识别猫和狗的模型,你需要准备一些包含猫和狗图片的数据集。

调整模型:接下来,你需要对模型进行一些调整,使其更适合你的任务。这包括改变模型的某些部分(比如添加或删除一些层)或调整模型的参数。

训练模型:最后,你需要使用准备好的数据对模型进行训练。这个过程类似于让学生做练习题,通过不断地练习,模型会逐渐提高其在特定任务上的性能。

精调的好处

提高性能:通过精调,模型在特定任务上的性能可以得到显著提高。比如,一个预训练模型可能在图像分类任务上的准确率为70%,但通过精调,准确率可能提高到90%。

减少训练时间:由于预训练模型已经学习了很多知识,因此精调所需的时间通常比从头开始训练模型要少得多。

减少数据需求:精调通常需要的数据量比从头开始训练模型要少。这意味着即使你的数据量有限,你也可以通过精调来提高模型的性能。

精调的应用

精调在许多领域都有广泛的应用。比如:

自然语言处理:在自然语言处理领域,精调被广泛用于各种任务,比如文本分类、情感分析、机器翻译等。

计算机视觉:在计算机视觉领域,精调被用于图像分类、目标检测、图像分割等任务。

语音识别:在语音识别领域,精调被用于提高语音识别模型的准确率。

来个总结

精调是一种强大的技术,它可以让预训练模型在特定任务上表现得更好。通过选择合适的预训练模型、准备相关数据、调整模型结构和参数,以及进行训练,我们可以显著提高模型在特定任务上的性能。精调的好处包括提高性能、减少训练时间和减少数据需求。无论是在自然语言处理、计算机视觉还是语音识别等领域,精调都有着广泛的应用。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 24
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值