让GPT-4o测测你是E人还是I人,prompt 绝了!

OpenAI 发布了 GPT-4o,同时也支持接口访问。接口的好处是不用登录官网也能使用。

使用GPT-4o之前,可以用下面的问题三连,进行验证

在这里插入图片描述

这次的MBTI性格测试任务,需要让GPT-4o给我们出一些列测试题,我们来作答。

每次GPT只出一道题,答完之后,再出下一道,全部答完后,GPT 根据作答结果进行性格分析。

整个任务我们用一条 Prompt 来完成,核心部分为:

  • 定义一个出题的任务

  • 让GPT明白要循环调用出题任务为用户出题

  • 记录整体完成度,给用户完成度的预期

  • 记录用户每次作答的结果,以便最后进行性格分析

这对 Prompt 的编写有一定的要求。我们先看看最终效果,在看具体的Prompt

在这里插入图片描述

这里,GPT-4o 会向我提问10个MBTI测试题,每一步都能准确记录进度和我的回答,最终生成一份详细的性格分析报告。

Prompt 如下:

## 角色``   ``你是一位MBTI性格测试专家``   ``## 目标``   ``向用户询问通过一系列MBTI测试题,根据用户测试,为用户提供专业的性格测试解读,生成性格分析报告。``   ``##  技能``- 设计专业的MBTI测试题``- 专业、准确的性格分析能力``   ``## MBTI测试题要求``- 题目数量:10``- 每个问题有2个选项(A、B)``- 每个题目都能清晰反映MBTI的一个维度,题目不重复`  `## workflow``- 出题,一次仅出一道题``- 用户回答完后,按照下面格式返回:`  `` - 进度:`[已回答题目数量/总题目数量]` ``  `` - 已作答:`[题目:答案的内容,用Markdown列表格式返回]` ``  `` - 下一题:`[展示下一题和对应的选项]` ```- 当所有问题回答完毕,按照[已作答]的内容进行总结、分析,给出用户的MBTI性格分析报告``   ``## 初始化``   ``向用户简单介绍自己,遵守[MBTI测试题要求],发挥[技能],按照[workflow]开始工作``   

Prompt用Markdown编写,原因有二,第一,Markdown编写的内容结构明确,层级清晰;第二,GPT天生就能读懂Markdown 格式的内容。

这个任务的 Prompt 还是值得品味一下的,好了,老渡离AI超级个体又近了一步。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>嗯,用户想了解如何使用大模型来分析和理解GitHub上的源码库。首先,我需要回想一下相关的知识,特别是关于大模型应用在代码分析方面的内容。根据系统提供的引用内容,引用[2]提到了大模型在代码生成、部署方案以及微调技巧等方面的应用。这可能和用户的查询相关。 首先,用户可能需要知道如何利用现有的工具,比如GPT-4或CodeLlama,来解读代码库。我应该分步骤来回答,从基础方法到高级工具,再到工作流程和注意事项。比如,先介绍基础方法,如代码摘要生成、函数级分析、依赖关系解析等,这些都是大模型可以处理的任务。 然后,需要提到具体的工具和框架,比如GitHub Copilot、LangChain、OpenAI API等。这些工具如何帮助用户分析代码库,可能需要具体说明它们的用途,比如Copilot可以辅助代码理解,LangChain可以处理大型代码库的分块分析。 接下来,用户可能还需要知道如何部署和微调模型,特别是针对特定代码库的情况。引用[2]里提到了huggingface下载模型、LoRA微调等,这些都是关键点。需要说明在什么情况下需要微调模型,以及如何进行微调,比如使用LoRA技术来适应特定代码风格。 然后,考虑用户可能的实际应用场景,比如智能搜索、代码生成、漏洞检测等,这些都需要结合大模型的能力。同时,用户可能关心如何集成到工作流中,比如用自动化脚本调用API,或者结合CI/CD流程。 还要注意潜在的问题,比如处理大型代码库时的分块策略,模型对上下文的限制,以及隐私问题。这些都是用户在实际操作中可能会遇到的挑战,需要提前提醒。 最后,生成相关问题,帮助用户进一步探索。比如如何评估模型的分析效果,处理多语言项目的方法,微调的具体步骤等。这些问题应该围绕用户的需求展开,帮助他们深入理解各个方面的应用。 总的来说,回答需要结构清晰,逐步引导用户了解方法、工具、部署优化和注意事项,并结合实际例子和引用中的内容,确保信息准确可靠。同时,保持语言的中文和格式要求,正确使用LaTeX,并在适当的地方添加引用标识。</think>### 使用大模型解读GitHub源码库的方法与工具 #### 一、基础方法 1. **代码摘要生成** 通过大模型(如GPT-4、CodeLlama)输入代码片段,生成自然语言描述。例如: ```python # 示例:分析Python函数功能 def merge_sort(arr): if len(arr) > 1: mid = len(arr) // 2 left = merge_sort(arr[:mid]) right = merge_sort(arr[mid:]) return merge(left, right) return arr ``` 大模型可输出:`"该函数实现归并排序算法,通过递归将数组拆分为左右两部分并合并排序结果。"` 2. **函数级分析** 对大模型输入函数参数、返回值及逻辑,要求其解释设计意图或复杂度。例如: $$T(n) = 2T(n/2) + O(n) \implies O(n \log n)$$ 模型可推导时间复杂度的数学表达式[^2]。 3. **依赖关系解析** 结合静态分析工具(如Tree-sitter)提取代码结构,再通过大模型生成模块交互图。 --- #### 二、工具与框架 | 工具名称 | 功能特点 | 应用场景 | |----------------|-----------------------------------|-------------------------| | GitHub Copilot | 内联代码解释/自动补全 | 实时辅助阅读复杂函数 | | LangChain | 支持长文本分块与上下文管理 | 大型代码库分阶段分析 | | OpenAI API | 定制prompt实现定向分析 | 生成架构文档/API说明 | | LLaMA Factory | 支持多机微调适配领域代码 | 专有代码库定制化解读| --- #### 三、进阶部署与优化 1. **模型微调方案** - 使用LoRA技术对基础模型(如CodeLlama-34B)进行微调,适配特定编程语言范式 - 数据集构建:提取GitHub源码中的`代码-注释`对作为训练数据 - 评估指标:BLEU(代码摘要质量)、F1(API调用关系识别) 2. **处理大型仓库策略** ```mermaid graph LR A[代码库克隆] --> B[AST解析] B --> C[按模块分块] C --> D[并行模型推理] D --> E[结果聚合] ``` --- #### 四、典型应用场景 1. **智能搜索** 输入自然语言查询(如"查找处理用户认证的中间件"),模型定位相关代码文件。 2. **漏洞检测** 结合Semgrep规则,通过大模型分析潜在安全风险: ```python # 风险代码片段 query = "SELECT * FROM users WHERE id=" + user_input ``` 模型输出:`"该代码存在SQL注入漏洞,建议使用参数化查询。"` 3. **代码迁移** 跨语言转换(如Java转Python),需配合约束解码保证语法正确性。 --- #### 五、注意事项 1. **上下文窗口限制** - GPT-4 Turbo支持128k tokens,但仍需对大型类进行分段处理 - 使用`sliding window attention`技术扩展上下文 2. **隐私与许可** 企业私有代码需部署本地化模型(如通过LLaMA Factory微调私有模型) ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值