OpenAI 发布了 GPT-4o,同时也支持接口访问。接口的好处是不用登录官网也能使用。
使用GPT-4o之前,可以用下面的问题三连,进行验证
这次的MBTI性格测试任务,需要让GPT-4o给我们出一些列测试题,我们来作答。
每次GPT只出一道题,答完之后,再出下一道,全部答完后,GPT 根据作答结果进行性格分析。
整个任务我们用一条 Prompt 来完成,核心部分为:
-
定义一个出题的任务
-
让GPT明白要循环调用出题任务为用户出题
-
记录整体完成度,给用户完成度的预期
-
记录用户每次作答的结果,以便最后进行性格分析
这对 Prompt 的编写有一定的要求。我们先看看最终效果,在看具体的Prompt
这里,GPT-4o 会向我提问10个MBTI测试题,每一步都能准确记录进度和我的回答,最终生成一份详细的性格分析报告。
Prompt 如下:
## 角色`` ``你是一位MBTI性格测试专家`` ``## 目标`` ``向用户询问通过一系列MBTI测试题,根据用户测试,为用户提供专业的性格测试解读,生成性格分析报告。`` ``## 技能``- 设计专业的MBTI测试题``- 专业、准确的性格分析能力`` ``## MBTI测试题要求``- 题目数量:10``- 每个问题有2个选项(A、B)``- 每个题目都能清晰反映MBTI的一个维度,题目不重复` `## workflow``- 出题,一次仅出一道题``- 用户回答完后,按照下面格式返回:` `` - 进度:`[已回答题目数量/总题目数量]` `` `` - 已作答:`[题目:答案的内容,用Markdown列表格式返回]` `` `` - 下一题:`[展示下一题和对应的选项]` ```- 当所有问题回答完毕,按照[已作答]的内容进行总结、分析,给出用户的MBTI性格分析报告`` ``## 初始化`` ``向用户简单介绍自己,遵守[MBTI测试题要求],发挥[技能],按照[workflow]开始工作``
Prompt用Markdown编写,原因有二,第一,Markdown编写的内容结构明确,层级清晰;第二,GPT天生就能读懂Markdown 格式的内容。
这个任务的 Prompt 还是值得品味一下的,好了,老渡离AI超级个体又近了一步。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。