Prompt Cache技术,旨在通过在大型语言模型(LLM)的推理过程中重用不同提示(prompts)之间的注意力状态来加速推理。
图1 比较大型语言模型(LLM)生成Token的方法,每种方法展示三个步骤(1至3)。每个框表示一个令牌。蓝色框代表提示。(a) 一个LLM接收一个提示(蓝色令牌)并预测下一个令牌(A)(1)。然后,它将生成的令牌(A)附加到提示上以预测下一个令牌(B)(2)。这个过程被称为自回归,会一直持续直到满足停止条件。(b) KV缓存仅在第一步(1)计算一次提示的时间注意力状态,并在随后的步骤中重复使用它们;© Prompt Cache在服务之间重用KV状态以绕过提示注意力计算。当加载一个模式时,Prompt Cache会填充其缓存,并为从模式派生的提示重用缓存状态(1)。图2进一步详细说明了步骤1。
-
问题识别:许多输入提示在结构上高度重叠,例如系统消息、提示模板和文档上下文。这些重叠的文本段可以预先计算并存储其注意力状态,以便在用户提示中出现时重用。
-
Prompt Cache技术:通过使用称为Prompt Markup Language(PML)的模式,明确定义可重用的文本段,称为提示模块(prompt modules)。PML确保在重用注意力状态时位置的准确性,并为用户提供了一个接口来访问他们的提示中的缓存状态。
-
工作流程:当Prompt Cache接收到一个提示时,它首先处理其模式,并计算其提示模块的注意力状态。然后,这些状态被重用于提示中的提示模块,以及其他从同一模式派生的提示。
图2 Prompt Cache中的重用机制:(i) 首先,PML在模式和提示中明确了可重用的提示模块。提示模块可以有参数,如行程计划。导入模块的提示为参数(持续时间)提供值(3天)。提示可以在排除的模块和参数的位置上包括新的文本段,并在末尾添加。(ii) 其次,提示模块编码为模式中的所有模块预先计算注意力状态(1),并为将来的重用而缓存它们。(iii) 第三,当提供提示时,Prompt Cache采用缓存推理:它检索为导入的提示模块缓存的注意力状态(2),为参数(3)和新的文本段(4)计算它们,最后将它们连接起来,以产生整个提示的注意力状态(5)。这个图是对图1c中步骤1的进一步阐述。
- 设计和实现:Prompt Cache的设计包括了对提示结构的明确化、提示模块的编码、以及缓存推理的详细过程。实现使用了HuggingFace的transformers库,并在CPU和GPU上进行了评估。
使用原型实现,在多个LLM上评估了Prompt Cache。结果表明,Prompt Cache显著减少了首次生成token的时间延迟,尤其是在基于文档的问答和推荐等长提示上。GPU上的性能提升范围从8倍到60倍,CPU上则高达60倍,所有这些提升都在保持输出准确性的同时,无需修改模型参数。
GPU延迟测量:首次令牌时间(TTFT)对于三个NVIDIA GPU上的八个LongBench数据集。
CPU延迟测量**:首次令牌时间(TTFT)对于两个CPU上的八个LongBench数据集。**
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。