RAG优化神器:rerankers重新排名模型的终极方案,提供轻量级统一API

在基于检索的生成(Retrieval-Augmented Generation, RAG)系统中,Reranker 是用于提升检索文档质量的一个关键组件。首先,我们来分解一下 Reranker 的定义及其必要性。

什么是 Reranker?

Reranker 是对初步检索出的候选文档集进行重新排序的模型或算法。它在初始检索(通常基于简单的匹配算法,如 TF-IDF、BM25 或 Dense Embedding)之后,对结果进行二次处理,确保最相关的内容排在前面。Reranker 通常利用更复杂的语义理解和深度模型,比如 BERT 或其他 Transformer 模型,来更好地衡量候选文档与查询之间的相关性。

为什么需要 Reranker?

在大多数检索任务中,初次检索的文档集往往包含了许多相关性较低或不完全匹配的内容。这是因为初步检索模型通常基于词频或简单的向量匹配,难以精准捕捉查询和文档之间的深层次语义关系。因此,即使初始结果能找到一些相关文档,也无法保证这些文档是最优的答案。

引入 Reranker 的好处

提升相关性:通过对初步结果进行重新排序,Reranker 可以确保将最相关的文档排在前列,提升用户体验。

减少噪声:Reranker 能有效过滤掉不太相关的文档,减少冗余信息。

增强模型理解能力:相比于初级的词频或稀疏向量模型,Reranker 利用深度语言模型进行更深层次的文本理解。

提升生成质量:在 RAG 系统中,生成部分依赖于检索出的信息。如果检索内容的质量得到提升,生成的回答或文档也会更加准确和丰富。

Reranker 如何应用?

初次检索:使用如 TF-IDF 或 Dense Embedding 模型快速从大规模知识库中检索出一组候选文档。这一步需要快速响应,通常优先考虑速度。

二次排序:将初次检索得到的候选文档输入到 Reranker 模型中。Reranker 基于深度模型(如 BERT)重新评估每个文档的相关性,生成一个新的排序。

结果选择:基于 Reranker 生成的新排序,选择前 N 个最相关的文档,提供给下游的生成模型或直接展示给用户。

在这里插入图片描述

生成或展示:在 RAG 系统中,最终生成的回答是基于重排序后的文档,因此其质量会更高。如果用于信息检索系统,用户会得到最相关的检索结果。

本文介绍了 rerankers,这是一个 Python 库,它为最常用的重新排序方法提供了一个易于使用的界面。重新排序是许多检索管道不可或缺的组成部分;但是,有许多方法,依赖于不同的实现方法。

rerankers 将这些方法统一到一个用户友好的界面中,允许从业者和研究人员探索不同的方法,同时只需更改一行 Python 代码。此外,rerankers 确保其实现以尽可能少的依赖项完成,并尽可能重用原始实现,从而保证我们的简化界面与更复杂的界面相比不会降低性能。

完整的源代码和支持模型列表会定期更新,并在 https://github.com/answerdotai/rerankers 上提供。

在这里插入图片描述

论文地址:https://arxiv.org/pdf/2408.17344

Reranker 是任何检索架构的重要组成部分,但它们通常也比管道的其他部分更模糊。最近的一些方法开始探索使用大型语言模型(LLMs)作为重新排序器,这是一个备受关注的研究方向。

一些方法利用了非常强大的 LLMs,如 GPT-4,来执行零样本的列表重新排序,而另一些方法则通过在大型模型的输出上微调较小模型,达成了一种知识蒸馏的效果,从而创建了更高效的列表重新排序器,如 RankZephyr。

此外,最新的研究还探索了在推理阶段引入模型压缩技术,以便使用像 Gemma2 这样的 LLM 作为重新排序器,大幅降低计算成本的同时保持高性能。

Reranker 类有一个公开的方法 rank,它接受一个查询和一组文档,并返回一个 RankedResults 对象,如 Section 2.2 所示,其中包含重新排名的文档。

在这里插入图片描述

在开展这项工作时,没有现成的库能够提供一致的 API 来访问常见的重新排序方法,因此,现有的 reranker 没有直接的等效实现。虽然像 Terrier 和 Anserini 这样的广泛信息检索框架确实集成了重新排序功能,但它们旨在作为功能全面的检索平台,采用的开发方法与轻量级的重新排序器截然不同。

对于大多数 reranker 中集成的单个方法,通常已经有现成的在线 API 或实现可供使用。Reranker 并不与这些实现直接竞争,事实上,如果某个现有库足够成熟且依赖适中,我们的库通常会重用原作者的部分代码,或者作为这些库的封装器。

开始使用rerankers

安装非常简单。核心包只附带两个依赖项,tqdm 和 pydantic,以避免与当前环境发生任何冲突。然后,您可以仅安装要试用的模型所需的依赖项:

# Core package only, will require other dependencies already installed``pip install rerankers``   ``# All transformers-based approaches (cross-encoders, t5, colbert)``pip install "rerankers[transformers]"``   ``# RankGPT``pip install "rerankers[gpt]"``   ``# API-based rerankers (Cohere, Jina, soon MixedBread)``pip install "rerankers[api]"``   ``# FlashRank rerankers (ONNX-optimised, very fast on CPU)``pip install "rerankers[flashrank]"``   ``# RankLLM rerankers (better RankGPT + support for local models such as RankZephyr and RankVicuna)``# Note: RankLLM is only supported on Python 3.10+! This will not work with Python 3.9``pip install "rerankers[rankllm]"``   ``# To support LLM-Layerwise rerankers (which need flash-attention installed)``pip install "rerankers[llmlayerwise]"``   ``# All of the above``pip install "rerankers[all]"

在一行中加载任何受支持的 reranker,无论架构如何:

from rerankers import Reranker``   ``# Cross-encoder default. You can specify a 'lang' parameter to load a multilingual version!``ranker = Reranker('cross-encoder')``   ``# Specific cross-encoder``ranker = Reranker('mixedbread-ai/mxbai-rerank-large-v1', model_type='cross-encoder')``   ``# FlashRank default. You can specify a 'lang' parameter to load a multilingual version!``ranker = Reranker('flashrank')``   ``# Specific flashrank model.``ranker = Reranker('ce-esci-MiniLM-L12-v2', model_type='flashrank')``   ``# Default T5 Seq2Seq reranker``ranker = Reranker("t5")``   ``# Specific T5 Seq2Seq reranker``ranker = Reranker("unicamp-dl/InRanker-base", model_type = "t5")``   ``# API (Cohere)``ranker = Reranker("cohere", lang='en' (or 'other'), api_key = API_KEY)``   ``# Custom Cohere model? No problem!``ranker = Reranker("my_model_name", api_provider = "cohere", api_key = API_KEY)``   ``# API (Jina)``ranker = Reranker("jina", api_key = API_KEY)``   ``# RankGPT4-turbo``ranker = Reranker("rankgpt", api_key = API_KEY)``   ``# RankGPT3-turbo``ranker = Reranker("rankgpt3", api_key = API_KEY)``   ``# RankGPT with another LLM provider``ranker = Reranker("MY_LLM_NAME" (check litellm docs), model_type = "rankgpt", api_key = API_KEY)``   ``# RankLLM with default GPT (GPT-4o)``ranker = Reranker("rankllm", api_key = API_KEY)``   ``# RankLLM with specified GPT models``ranker = Reranker('gpt-4-turbo', model_type="rankllm", api_key = API_KEY)``   ``# ColBERTv2 reranker``ranker = Reranker("colbert")``   ``# LLM Layerwise Reranker``ranker = Reranker('llm-layerwise')``   ``# ... Or a non-default colbert model:``ranker = Reranker(model_name_or_path, model_type = "colbert")

Rerankers 将始终尝试根据其名称推断您尝试使用的模型,但如果可以,向其传递 model_type 参数总是更安全的!

然后,无论加载了哪个 reranker,都使用加载的模型对 documents 的查询进行排名:

> results = ranker.rank(query="I love you", docs=["I hate you", "I really like you"], doc_ids=[0,1])``> results``RankedResults(results=[Result(document=Document(text='I really like you', doc_id=1), score=-2.453125, rank=1), Result(document=Document(text='I hate you', doc_id=0), score=-4.14453125, rank=2)], query='I love you', has_scores=True)

所有重新排序器都将返回一个 RankedResults 对象,这是一个 pydantic 对象,其中包含 Result 对象列表和一些其他有用信息,例如原始查询。您可以通过运行 top_k() 从中检索前 k 个结果:

> results.top_k(1)``[Result(Document(doc_id=1, text='I really like you', metadata={}), score=0.26170814, rank=1)]

Result 对象在尝试访问它们存储的文档时是透明的,因为 Document 对象只是作为存储 ID 和元数据的一种简单方法而存在。如果要访问给定结果的文本或元数据,可以直接将其作为属性访问:

> results.top_k(1)[0].text``'I really like you'

Rerankers,这是一个轻量级的 python 库,支持在各种检索用例中使用各种重新排名方法。Rerankers 提供了一个简单、统一的接口,可以在一个轻量级包中使用几乎所有常见的方法重新排名,而不会对性能造成任何损害。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值