2024年10月21日,智源研究院正式发布原生多模态世界模型Emu3。该模型使用单一的Transformer进行训练,并通过将图像、文本和视频等不同模态的数据转化为离散空间中的令牌来进行预测。只基于下一个token预测,无需扩散模型或组合方法,即可完成文本、图像、视频三种模态数据的理解和生成,并超越传统任务特定模型的效果,在生成和感知任务中都达到了SOTA的水平。此外,该模型还可以生成高保真度的视频序列。研究团队认为,这种方法是构建跨语言多模态智能的重要一步,并开源了关键技术和模型以支持进一步的研究。
模型效果:
在图像生成方面,通过自动化评价指标对Emu3在四个流行文本到图像基准数据集(MSCOCO-30K、GenEval、T2I-CompBench和DPG-Bench)上的性能进行了评估。结果表明,尽管Emu3没有使用任何预训练的语言模型,但在与扩散方法、自回归扩散方法和基于自回归的方法的比较中表现出色,特别是在密集注释的任务上。此外,研究团队还通过引入重写器进一步评估了Emu3的表现,并将其与其他最先进的扩散模型进行了比较,结果表明Emu3在这些基准数据集上的表现与其相当甚至更好。
其次,在视频生成方面,研究团队将Emu3与13个最佳开源和专有文本到视频模型进行了定量比较。作者使用的评估工具VBench可以评估每个模型的质量和语义能力。结果显示,尽管Emu3不如一些先进的专有模型如Kling和Gen-3,但它在大多数开源文本到视频模型中的表现都很好。
最后,在视觉语言理解方面,研究团队测试了Emu3在各种公共视觉语言基准数据集上的表现。结果表明,Emu3可以在多个基准数据集上超越其竞争对手,这证明了Emu3在多模态理解方面的潜力。
01.图片生成效果测试
简单 Prompt
复杂 Prompt
多实体生成能力很能打,颜色能做到分别控制
多风格
强
多样性
模型地址:
https://modelscope.cn/collections/Emu3-9eacc8668b1043
论文地址:
https://arxiv.org/pdf/2409.18869
代码地址:
https://github.com/baaivision/Emu3
02.模型推理
模型推理(单卡80G显存):
from PIL import Image``from transformers import AutoTokenizer, AutoModel, AutoImageProcessor, AutoModelForCausalLM``from transformers.generation.configuration_utils import GenerationConfig``from transformers.generation import LogitsProcessorList, PrefixConstrainedLogitsProcessor, UnbatchedClassifierFreeGuidanceLogitsProcessor``import torch`` ``from modelscope import snapshot_download` `# model path``EMU_HUB = snapshot_download("BAAI/Emu3-Stage1")``VQ_HUB = snapshot_download("BAAI/Emu3-VisionTokenizer")`` ``import sys``sys.path.append(EMU_HUB)``from processing_emu3 import Emu3Processor`` ``# prepare model and processor``model = AutoModelForCausalLM.from_pretrained(` `EMU_HUB,` `device_map="cuda:0",` `torch_dtype=torch.bfloat16,` `attn_implementation="flash_attention_2",` `trust_remote_code=True,``)`` ``tokenizer = AutoTokenizer.from_pretrained(EMU_HUB, trust_remote_code=True, padding_side="left")``image_processor = AutoImageProcessor.from_pretrained(VQ_HUB, trust_remote_code=True)``image_tokenizer = AutoModel.from_pretrained(VQ_HUB, device_map="cuda:0", trust_remote_code=True).eval()``processor = Emu3Processor(image_processor, image_tokenizer, tokenizer, chat_template="{image_prompt}{text_prompt}")`` ``# Image Generation``# prepare input``POSITIVE_PROMPT = " masterpiece, film grained, best quality."``NEGATIVE_PROMPT = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry."`` ``classifier_free_guidance = 3.0``prompt = "a portrait of young girl."``prompt += POSITIVE_PROMPT`` ``kwargs = dict(` `mode='G',` `ratio="1:1",` `image_area=model.config.image_area,` `return_tensors="pt",` `padding="longest",``)`` ``pos_inputs = processor(text=prompt, **kwargs)``neg_inputs = processor(text=NEGATIVE_PROMPT, **kwargs)`` ``# prepare hyper parameters``GENERATION_CONFIG = GenerationConfig(` `use_cache=True,` `eos_token_id=model.config.eos_token_id,` `pad_token_id=model.config.pad_token_id,` `max_new_tokens=40960,` `do_sample=True,` `top_k=2048,``)`` ``h = pos_inputs.image_size[:, 0]``w = pos_inputs.image_size[:, 1]``constrained_fn = processor.build_prefix_constrained_fn(h, w)``logits_processor = LogitsProcessorList([` `UnbatchedClassifierFreeGuidanceLogitsProcessor(` `classifier_free_guidance,` `model,` `unconditional_ids=neg_inputs.input_ids.to("cuda:0"),` `),` `PrefixConstrainedLogitsProcessor(` `constrained_fn ,` `num_beams=1,` `),``])`` ``# generate``outputs = model.generate(` `pos_inputs.input_ids.to("cuda:0"),` `GENERATION_CONFIG,` `logits_processor=logits_processor,` `attention_mask=pos_inputs.attention_mask.to("cuda:0"),``)`` ``mm_list = processor.decode(outputs[0])``for idx, im in enumerate(mm_list):` `if not isinstance(im, Image.Image):` `continue` `im.save(f"result_{idx}.png")`` ``# Multimodal Understanding``text = "The image depicts "``image = Image.open("assets/demo.png")``inputs = processor(` `text=text,` `image=image,` `mode='U',` `padding="longest",` `return_tensors="pt",``)`` ``GENERATION_CONFIG = GenerationConfig(` `pad_token_id=tokenizer.pad_token_id,` `bos_token_id=tokenizer.bos_token_id,` `eos_token_id=tokenizer.eos_token_id,` `max_new_tokens=1024,``)`` ` `outputs = model.generate(` `inputs.input_ids.to("cuda:0"),` `GENERATION_CONFIG,` `attention_mask=inputs.attention_mask.to("cuda:0"),` `)`` ` `outputs = outputs[:, inputs.input_ids.shape[-1]:]` `answers = processor.batch_decode(outputs, skip_special_tokens=True)` `for ans in answers:` `print(ans)
图片生成显存占用:
多模态理解显存占用:
03.模型微调
我们使用ms-swift对Emu3-Chat进行微调。ms-swift是魔搭社区官方提供的大模型与多模态大模型微调推理框架。
ms-swift开源地址:
https://github.com/modelscope/ms-swift
通常,多模态大模型微调会使用自定义数据集进行微调。在这里,我们将展示可直接运行的demo。我们使用 coco-en-mini数据集:https://modelscope.cn/datasets/modelscope/coco_2014_caption进行微调。
在开始微调之前,请确保您的环境已准备妥当。
git clone https://github.com/modelscope/ms-swift.git``cd ms-swift``pip install -e .[llm]
微调脚本:
# 默认:微调 LLM, 冻结 image tokenizer``CUDA_VISIBLE_DEVICES=0 swift sft \` `--model_type emu3-chat \` `--model_id_or_path BAAI/Emu3-Chat\` `--sft_type lora \` `--dataset coco-en-mini#500`` ``# Deepspeed ZeRO2``NPROC_PER_NODE=4 \``CUDA_VISIBLE_DEVICES=0,1,2,3 swift sft \` `--model_type emu3-chat \` `--model_id_or_path BAAI/Emu3-Chat \` `--sft_type lora \` `--dataset coco-en-mini#500 \` `--deepspeed default-zero2
训练显存占用:
如果要使用自定义数据集,只需按以下方式进行指定:
# val_dataset可选,如果不指定,则会从dataset中切出一部分数据集作为验证集` `--dataset train.jsonl \` `--val_dataset val.jsonl \``{"query": "<image>55555", "response": "66666", "images": ["image_path"]}``{"query": "<image><image>eeeee", "response": "fffff", "history": [], "images": ["image_path1", "image_path2"]}``{"query": "EEEEE", "response": "FFFFF", "history": [["query1", "response1"], ["query2", "response2"]]}
训练loss图:
微调后推理脚本如下:
CUDA_VISIBLE_DEVICES=0 swift infer \` `--ckpt_dir output/emu3-chat/vx-xxx/checkpoint-xxx \` `--load_dataset_config true`` ``# or merge-lora & infer``CUDA_VISIBLE_DEVICES=0 swift infer \` `--ckpt_dir output/emu3-chat/vx-xxx/checkpoint-xxx \` `--load_dataset_config true --merge_lora true
微调后模型对验证集进行推理的结果:
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。