AI编程,下半年火遍全网,最近的Devin,以500美刀/M的价格杀疯了,早上openai 2000刀订阅的新闻也传遍了各个微信群。cursor、windsurf、bold.new 都逐渐的进入了实用的阶段,未来对AI说“帮我写个微信”这种需求,似乎也不太遥远。今天给家人们分享的是AI编程赛道的独角兽,Replit。
背景
早期流行的,如github copilot,国产的通义灵码这些AI编程产品,在代码补全和增量开发方面表现出色,所以获得了比较大的市场。但是短期来看,AI编程赛道的一个发展趋势是,“人人都是产品经理/人人都是超级个体”。
Replit Agent 可以提前思考并采取正确的行动顺序,可以轻松构建 Web 应用、各种工具软件,或任何你想象中的新奇想法。它像智能助手一样,帮助人快速从想法转化为可用的代码。
保持高可靠性并让用户参与其中
Replit 团队专注于可靠性,将其 AI Agent的环境限制在 Replit Web 应用和 Replit 开发者已可用的工具范围内。他们的Agent是一个可以迭代循环的 ReAct 风格的智能体。
随着时间的推移,Replit Agent 采用了Multi-Agent架构。当只有一个Agent管理工具时,出错的几率会增加,因此 Replit 团队将每个Agent执行的任务限制为尽可能小的任务。他们为不同的Agent分配了角色,包括:
-
一个管理Agent来监督工作流程。
-
编辑Agent来处理特定的编码任务。
-
一个验证Agent来检查代码并经常与用户互动。
Replit 总裁 Michele Catasta 指出了他们构建理念的一个关键区别:
“我们不追求完全的自主性。我们希望用户保持参与和投入。”
例如,他们的验证Agent的独特之处在于,它不仅仅检查代码并试图做出决定。它经常会与用户对话,以在开发过程中强制执行持续的用户反馈。
机械工业出版社Agent新书推荐:
提示工程
Replit 采用了一系列先进技术来提高其编码Agent的性能,尤其是对于像文件编辑这样的复杂任务。
Replit 经常使用少量样本示例以及冗长的、针对特定任务的指令来有效地指导模型。对于开发过程中更困难的部分,例如文件编辑,Replit 最初尝试了微调。但是,这并没有取得任何突破。相反,性能的显著提高来自于利用 Claude 3.5 Sonnet。
Replit 还开发了动态提示构建技术来处理token限制,类似于 OpenAI 流行的提示编排库使用的系统。他们压缩和截断长期的记忆轨迹,以管理不断增长的上下文。这包括使用LLM压缩记忆,以确保只保留最相关的信息。
为了提高模型的理解和提示组织,Replit 采用了结构化格式。特别是,XML 标签有助于描绘提示的不同部分,从而指导模型理解任务。对于冗长的指令,Replit 依赖 Markdown,因为它通常在模型的训练分布范围内。
值得注意的是,Replit 没有以传统方式进行工具调用。他们没有使用 OpenAI API 提供的函数调用,而是选择生成代码来自己调用工具,因为这种方法更可靠。由于 Replit 拥有包含 30 多个工具的宽泛库,每个工具都需要多个参数才能正确运行,这使得工具调用过程变得复杂。Replit 编写了一种受限的基于 Python 的 DSL 来处理这些调用,从而提高了工具执行的准确性。
让用户参与到Agent的旅程中
Replit 在设计其用户体验时,专注于实现关键的人机协作工作流程。首先,Replit 团队实施了回溯功能以增加控制。在Agent工作流程的每个主要步骤中,Replit 都会在后台自动提交更改。这使用户可以“回到过去”的任何时间点并进行更正。
在一个复杂的、多步骤的Agent轨迹中,前几个步骤往往最成功,而可靠性在后面的步骤中会下降。因此,团队认为,在必要时使用户能够恢复到早期版本尤为重要。初学者只需单击一个按钮即可撤消更改,而高级用户则可以更灵活地深入 Git 面板并直接管理分支。
由于 Replit 团队将所有内容都纳入了工具中,因此每当Agent安装软件包、执行 shell 命令、创建文件等时,用户都可以看到关于Agent操作的清晰、简洁的更新消息。
用户无需关注大型语言模型的原始输出,而是可以看到他们的应用程序随着时间的推移而发展,并决定他们希望在Agent的思考过程中投入多少(例如,选择展开以查看Agent已采取的每个操作及其背后的想法,或忽略它)。
与其他Agent工具不同,Replit 还允许你通过单击几下即可部署你的应用程序。发布和共享应用程序的功能已平滑地集成到代理工作流程中。
实时反馈和跟踪监控
为了增强对其Agent的信心,Replit 依靠直觉、实际反馈以及对其代理交互的跟踪可见性的结合。
在 Replit Agent 的 alpha 测试阶段,他们邀请了一小群约 15 名以 AI 为先的开发者和影响者来测试他们的产品。为了从 alpha 反馈中获得可操作的见解,Replit 集成了 LangSmith 作为其可观察性工具,以跟踪和处理其跟踪中存在问题的代理交互。
Replit 团队会在长时间运行的跟踪中搜索以查明任何问题。由于 Replit Agent 允许人类开发者根据需要介入并纠正Agent轨迹,因此多轮对话很常见。他们能够在 LangSmith 的逻辑视图中监控这些对话流程,以识别用户卡住并可能需要人工干预的瓶颈。
赋予开发者创造力
Replit Agent 正在简化新手和资深开发者的软件开发。通过优先考虑人机协作和Agent操作的可见性,Replit 团队正在帮助用户克服最初的障碍,释放他们的创造力。
虽然Agent的世界提供了许多强大的新用例,但调试或预测Agent的行为通常仍然是未知领域。Replit 期待与开发者社区一起突破界限,并致力于解决棘手的问题,例如评估 AI 代理轨迹。
在构建有用且可靠的Agent的道路上,Michele Catasta 做出了最好的总结:
“我们必须拥抱这种新事物带来的复杂性。”
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。