Agentic AI:Agent的崛起

Postman 是一款使用很广的 API 开发工具,它们也推出了 Postbot AI 助手,借此它们也分享了一些 AI 方面的工程见解,当然核心还是 API。

AI世界发生了什么

今年在 AI 领域发生了什么呢?

1:太多的 AI 基础模型

Anthropic的Claude、Google的Gemini、Meta的Llama以及Amazon新推出的Nova,都在努力追赶 OpenAI,期待提供不一样的能力,而 token 价格也是一减再减,模型的上下文窗口也越来越长,但基于 LLM 的工作方式,LLM 的能力好像也达到了极限。

另外普遍一个见解就是训练数据集快耗尽了,当然合成数据能缓解这个问题。

最重要的就是新模型和不断迭代的版本,让AI领域变得更加分散和复杂,开发者需要应对大量不同的AI模型和版本,整合的难度非常大,而且这些 AI 公司也是苦不堪言,系统快速的迭代,加上模型生成不可预测性,整个回归测试复杂度非常高,而且可追溯性也非常复杂。

当然也出现了一个新趋势,为特定任务和数据集设计的较小、专业化模型,包括边缘 AI 也发展的非常快,较小的模型可以更便宜、更快,帮助构建仅使用大型基础模型无法实现的体验。

2:提高模型准确性:微调和RAG

AI遇到的一个问题就是 AI 原型在测试环境下表现很不错,但与生产的系统存在很大的差距,需要花费大量时间评估和测试模型,但有两种公认的方法可以环境此问题。

首先就是微调,虽然开发人员喜欢调整所有参数,但实际上只用关注4-5个关键调整,随着模型提供商简化了微调过程,微调变得不那么耗时。

其次就是 RAG,通过上下文和集成外部数据源以增强LLM响应,这两种方法都需要仔细协调数据存储、检索和测试。

幻觉仍然是一个挑战,它们是上下文相关的,在创作领域可能是优势,但一些领域(比如金融)确实致命的缺点。

3:定制的领域模型

除了基础模型,大部分的团队都在使用专有数据集构建定制模型,能针对特定的业务需求进行优化,各大公司从性能、成本、可靠性角度考虑,在多云中部署AI应用程序,这些 AI 都通过 API 暴露,更方便与各种软件生态系统的无缝集成。

而且现在很多大模型都部署为容器运行,比如英伟达的 NIM 框架,总之模型的能力正大范围的以 API 的形式提供。

Agentic AI

随着 AI 的成熟,单次、仅文本的传统 LLM 模型向更复杂系统的转变,这就是代理,代理结合了LLM的推理能力与工具,以在结构化的多步工作流中执行任务,通常包括多个LLM共同工作,与软件系统一起实现复杂目标,这就是 Agentic AI 系统。

Agentic AI 的关键组件:

  • 反思

  • 工具使用(API调用)

  • 规划

  • 多代理协作

站在 Postman 的角度,将 LLM 本身的能力抽象为 API,而构建 Agentic AI 还是传统的整合手段。

现实世界如何操作 agents

1:系统思维,为Agentic AI系统定义API边界

虽然注意力仍然集中在模型上,但需要转向系统思维,开发人员需要将思维方式从“使用模型”转变为与完整系统互动,API 真是实现系统复杂性的关键,随着向多代理协作和推理迈进,掌握如何通过API连接和编排多个LLM变得至关重要。

2:构建可重用的API以供代理使用

Agentic AI 依赖外部工具,即API来执行操作,可重用的API对于实现无缝的代理工作流至关重要,

Anthropic 最近推出的 Model Context Protocol 协议就提供了一个框架,说明AI代理如何以结构化的方式与外部系统互动。

3:评估风险因素和API访问

Agentic AI 虽然很强大,但仍然不可预测,需要评估风险并设计具有适当防护措施的API,所以文档化 API 仍然很重要。

4:构建信任层和防护措施

在 Agentic AI 中建立信任依赖于两个关键要素:API防护措施和代理行为的保障,API 必须受到保护,其次对 Agentic AI 必须进行彻底的测试。

站在 Postman 的角度,从 API 角度理解 LLM 确实是非常简洁的理解方式,世界还是 API 的。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### Agentic AI Agent Planning, Reflection, and Self-Correction Agentic artificial intelligence (AI) agents possess the capability to plan actions towards achieving goals while reflecting on past performance and correcting mistakes. These abilities are fundamental components that enable agentic systems to operate autonomously with a high degree of efficiency. #### Planning Capabilities Planning involves setting objectives and determining sequences of actions required to achieve these goals. Advanced planning algorithms allow agentic AI agents to consider multiple scenarios simultaneously by evaluating potential outcomes before committing resources or executing tasks[^1]. This process often includes: - **Goal Setting**: Defining clear targets based on internal states or external inputs. - **Action Sequencing**: Determining optimal orderings of operations necessary for goal attainment. - **Resource Management**: Allocating available assets efficiently across planned activities. ```python def generate_plan(agent_state, environment_model): """ Generates an action sequence from current state to reach desired objective Parameters: agent_state (dict): Current condition of the agent including location, inventory etc. environment_model (object): Model representing world dynamics Returns: list: Ordered set of actions leading toward target achievement """ # Define goal here... goal = define_goal(environment_model) possible_actions = get_possible_actions(agent_state, environment_model) best_sequence = find_best_action_sequence(possible_actions, goal) return best_sequence ``` #### Reflective Mechanisms Reflection enables agentic entities to analyze previous experiences critically. Through this analysis, insights can be gained regarding what worked well versus areas needing improvement. Techniques such as reinforcement learning facilitate continuous adaptation through trial-and-error processes where rewards/penalties guide future decision-making strategies[^2]. #### Self-Correction Protocols Self-correction refers to mechanisms allowing intelligent agents to identify errors during execution phases promptly. Once detected, corrective measures are initiated automatically without human intervention. Common approaches include anomaly detection models trained specifically for recognizing deviations from expected behavior patterns within specific contexts[^3]. --related questions-- 1. How do modern AI frameworks support dynamic replanning when initial plans fail? 2. What role does machine learning play in enhancing reflective practices among autonomous agents? 3. Can you provide examples demonstrating effective implementations of self-correcting features in real-world applications?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值