Mamba与Transformer的完美结合:图像修复新突破!

论文标题:
Multi-dimensional Visual Prompt Enhanced Image Restoration via Mamba-Transformer Aggregation

开源代码及数据集链接:
https://github.com/12138-chr/MTAIR

引言

在现实世界中,不良天气条件(如雾和雨)以及成像系统和传输介质的缺陷往往导致图像质量下降。这种退化表现为清晰度降低、细节模糊、对比度减弱和噪声增加等。在实践中,图像退化会严重干扰智能视觉系统的有效执行。因此,从损坏的图像中恢复出高清晰度和视觉上令人愉悦的清晰图像变得至关重要。本文提出了一种结合Mamba与Transformer的创新方法,通过多维视觉提示学习来提升图像修复的效果。

问题背景及相关工作

图像修复技术在现代工业应用中具有广泛的实际意义。然而,传统的深度学习方法通常针对特定的退化类型进行优化,因此在处理多种退化时表现不佳。最近的研究尝试开发“全能型”模型,能够在单一模型中处理不同类型和程度的图像退化。然而,基于Transformer的主流方法在模型能力与计算负担之间面临两难。 大部分Mamba相关的方法仅在空间维度上进行全局建模,没有充分利用通道维度的信息。

研究目标

本研究旨在解决当前图像修复技术中存在的两大问题:首先是模型在处理多种退化类型时的局限性,其次是基于Transformer的方法在计算复杂度上的挑战。研究的难点在于如何在不牺牲计算效率的前提下,充分利用Mamba和Transformer的互补优势,实现高效的多退化图像修复。

核心设计

为了实现上述目标,本文提出了一种结合Mamba与Transformer的创新方法。通过Mamba的选择性扫描机制聚焦于空间建模,能够在线性复杂度下捕获长距离空间依赖性;同时,Transformer的自注意力机制则聚焦于通道建模,避免计算负担的指数增长。此方法被称为MTAIR(Image Restoration via Mamba-Transformer Aggregation)。多维提示学习模块被设计用于在多尺度编码器/解码器层中学习提示流,从而揭示不同退化的潜在特征。

主要创新点

本文的主要创新点如下:

综合优势利用: 在Mamba和Transformer的交叉维度协作中,利用选择性扫描机制和自注意力机制分别在空间和通道维度进行建模。

多维提示学习: 设计了一种新的多维提示学习模块,能够从多尺度层中学习提示流,增强“全能型”模型的能力。

高效的计算资源利用: 在受限计算资源下,充分发挥Mamba和Transformer的互补优势,提升图像修复任务的性能。

实验结果

在本节中,本文展示了MTAIR模型在多种数据集上的实验结果,包括去噪、去雨和去雾任务。实验结果表明,MTAIR在各个任务上均表现出色,超越了许多流行的方法。

对比试验

总结与未来展望

本文提出了一种结合Mamba与Transformer的图像修复模型MTAIR,该模型在各个任务上均表现出色。未来的研究可以探讨将此方法应用于其他低级视觉任务,如超分辨率等。同时,进一步优化模型的计算效率,使其在移动设备上也能高效运行。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### Mamba-2 模型概述 Mamba-2 是一种先进的序列建模框架,旨在通过灵活的小型神经网络生成状态空间模型(State-Space Model, SSM)的参数[^1]。这种设计使得模型能够根据输入数据的特点自适应地调整其行为模式。 #### 模型特性 Mamba-2 的核心在于利用一个小规模的神经网络 `param_net` 来动态生成 SSM 参数。以下是该模型的主要特点: 1. **实时参数调整** 使用小型神经网络生成 SSM 参数的能力使 Mamba-2 能够根据不同类型的输入数据自动优化自身的表现。例如,在处理自然语言时,模型会更加关注上下文语义信息;而当面对数值型数据时,则倾向于捕捉统计学特征。 2. **高效性灵活性** 尽管采用了复杂的内部机制,但由于参数生成器的设计较为紧凑,整体架构依然保持较高的运行效率。这使其适用于多种实际应用场景中的大规模数据分析任务。 3. **跨领域适用性** 结合其他技术如 Transformer 和多维视觉提示增强功能后,基于 Mamba 构建的一代一体化图像恢复解决方案展示了卓越的效果——不仅限于文本或单一维度的时间序列预测问题解决能力之外还扩展到了诸如图片修复等领域内取得突破性的成果][^[^24]。 #### 技术细节 下面是一个简化版的 Python 实现片段用于展示如何定义并调用上述提到过的 `param_net` 函数来自动生成所需的状态转移矩阵及其辅助变量: ```python import torch.nn as nn def param_net(x): linear1 = nn.Linear(input_dim, hidden_dim) activation = nn.ReLU() linear2 = nn.Linear(hidden_dim, output_dim) x = linear1(x) x = activation(x) x = linear2(x) A, B, C = torch.split(x, [dim_a, dim_b, dim_c], dim=-1) A = A.sigmoid() * 2 - 1 return A, B, C ``` 此函数接收任意形状张量作为输入,并返回三个分别对应不同用途向量A,B,C;其中特别值得注意的是对于矩阵A进行了特殊变换操作以确保最终得到的结果满足特定范围约束条件(-1,+1). #### 应用场景 凭借强大的泛化能力和高效的运算性能,Mamba-2 可广泛应用于以下几个方面: - 时间序列预测: 如股票价格走势预估、天气预报等. - 自然语言处理(NLP): 文本分类、情感分析等方面表现出色. - 图像处理: 去噪、去雨以及去除雾霾等功能均达到行业领先水平. --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值