今天,咱们来聊聊一项挺有意思的研究,它研究了大模型是如何“反省”自己,从而变得更聪明的。
验证了8种大模型“反思方式”,最高的可以让GPT-4 Agents从baseline的79%准确率提升至97%!
❝
Self-Reflection in LLM Agents: Effects on Problem-Solving Performance
为了观察LLM在做选择题时,是不是也能像咱们人类一样,错了就好好反思。
作者们找来了9种现在挺火的LLM,让它们先老老实实答题,然后,如果答错了,就再给它们一次机会“反省”,看看能不能重新做对。文中准备了8种不同的“反省方式”,就像给学生布置不同的作业一样:
-
“重来一次”: 知道自己错了,重新试一遍。(简单粗暴型)
-
“错哪儿了”: 列出犯错的关键点。(像不像老师批改作业?)
-
“下次注意”: 给出一些通用的改进建议。(鸡汤来一碗?)
-
“为啥错了”: 解释自己犯错的原因。(这可是深度反思)
-
“怎么做对”: 列出解决问题的步骤。(手把手教你)
-
“正确答案”: 提供一步步的正确解答。(直接给答案了)
-
“全都要”: 同时使用上面所有反思方式。(集大成者)
-
“开卷考试”: 可以看到全部信息,包括正确答案(对比上限,看看AI的上限在哪儿)。
实验流程:
通过“反省”,LLM的解题能力确实提升了不少!这说明AI也在慢慢学会从错误中学习了。而且,即使只是简单地“重来一次”,效果也还不错。这可能是因为它们第二次做的时候更小心了,或者会选那个感觉更靠谱的答案。
总结
-
全面进步: 不管是哪个LLM,只要“反省”一下,都能提高解题能力。
-
信息越多,进步越大: 那些让AI解释原因、列步骤的反思方式,比那些简单给个建议的反思方式,效果更好。
-
不是“照抄答案”: 作者们罢把正确答案相关的信息都“隐藏”起来,确保AI不是直接“抄答案”,而是真的学会了。
-
“偏科”也存在: “反省”对有些领域的问题(比如逻辑推理)提升更明显,说明这种能力可能更适合深度思考。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。