【LLM&Agent】PPTAgent:PPT自动生成Agent框架

来看一个PPT生成思路:PPTAgent。传统的PPT生成方法通常使用端到端的文本生成范式,这种方法仅关注文本内容,忽略了布局设计和PPT结构。PPTAgent 采用了一种基于编辑的生成范式,解决处理空间关系和设计风格方面的挑战。

传统方法的每个幻灯片 可以用以下公式表示:

其中, 表示幻灯片上的元素数量, 表示由章节和图形组成的源内容。每个元素 由其类型、内容和样式属性(如边框、大小、位置等)定义。

与传统的生成方法相比,PPTAgent 采用了一种基于编辑的生成范式,该方法生成一系列修改现有幻灯片的动作。过程可以用以下公式表示:

其中, 表示生成的动作数量,每个动作 表示一行可执行的代码, 是正在编辑的参考幻灯片。

方法

PPTAgent框架

在本文中,PPTAgent 是一个用于自动生成PPT的框架。采用基于编辑的工作流程,分为两个阶段:PPT分析和PPT生成。

阶段 I: PPT分析

主要目标是通过幻灯片聚类内容schema提取,为PPT生成提供结构化和语义化的参考信息。这一阶段的结果将直接影响后续阶段的生成质量和效率。

  1. 幻灯片聚类

    幻灯片聚类(层次聚类)是将参考PPT中的幻灯片按照其功能和内容进行分组的过程。幻灯片可以分为两大类:

    聚类算法:

    层次聚类

    聚类示例

  • 结构性幻灯片:这些幻灯片主要用于支持演示文稿的结构,例如开场幻灯片、过渡幻灯片和结束幻灯片。对于此类幻灯片,PPTAgent利用LLM推断每个幻灯片的功能角色,并根据这些角色进行分组。这些幻灯片通常具有明显的文本特征。

  • 内容性幻灯片:这些幻灯片主要用于传达具体的信息,例如包含项目符号、图表和图像的幻灯片。对于此类幻灯片,PPTAgent采用基于图像相似性的层次聚类方法。通过计算幻灯片之间的图像相似度,将相似的幻灯片归为一组。

  1. 内容Schema提取

    完成幻灯片聚类后,PPTAgent进一步分析每个聚类的内容Schema,以确保编辑的目标一致性。由于现实世界中的幻灯片可能非常复杂且碎片化,PPTAgent利用LLM的上下文感知能力提取多样化的内容Schema。PPTAgent定义了一个内容Schema提取框架,其中每个元素由其类别模态内容表示。基于这个框架,PPTAgent通过LLM的指令遵循(原文给出了相关prompts)和结构化输出能力,从每个幻灯片中提取内容Schema。提取过程如下:

  • 类别:描述元素的类型,例如文本框、图像等。

  • 模态:描述元素的呈现方式,例如纯文本、带图形的文本等。

  • 内容:描述元素的具体内容,例如文本内容或图像的替代文本。

阶段 II:PPT生成

第二阶段是基于第一阶段的分析结果,生成新的PPT。这一阶段的核心是通过交互式的编辑过程,利用参考幻灯片和输入文档生成目标PPT。步骤包括:生成一个结构化的大纲,指定每个幻灯片的参考幻灯片和相关内容;使用LLMs迭代编辑参考幻灯片以生成新幻灯片;实现五个专门的API,允许LLMs编辑、删除和复制文本元素,以及编辑和移除视觉元素。

大纲生成:大纲生成是根据人类偏好,指导LLM创建一个结构化的大纲。每个条目指定参考幻灯片、相关文档部分索引以及新幻灯片的标题和描述。通过利用LLM的规划和总结能力,结合从参考PPT中提取的语义信息,生成一个连贯且吸引人的大纲,从而指导新PPT的生成过程。

幻灯片生成:幻灯片生成是在大纲的指导下,通过迭代编辑参考幻灯片来生成新幻灯片的过程。为了实现对幻灯片元素的精确操作,PPTAgent实现了五个专门的API,允许LLM编辑、删除和复制文本元素,以及编辑和删除视觉元素。此外,为了增强对幻灯片结构的理解,PPTAgent将幻灯片从其原始XML格式转换为HTML表示,这种表示形式更易于LLM解释

实验

评价指标,现有的指标包括:

  • 成功率(Success Rate, SR)

  • 困惑度(Perplexity, PPL)

  • Fréchet Inception Distance(FID)

PPTEval指标包括:

  • 内容(Content)

  • 设计(Design)

  • 连贯性(Coherence)

  • 平均分(Avg.)

这些指标用于评估生成的PPT在不同维度上的质量。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 大型语言模型代理框架概述 大型语言模型(LLM)代理框架旨在利用强大的语言处理能力和广泛的背景知识来执行特定任务或解决问题。这类框架通常集成了多个组件,以确保高效的任务完成和服务质量。 #### 对话驱动的解决方案代理(DERA) 一种具体的实现方式是对话驱动的解决代理(DERA),该架构特别强调通过高质量的人机交互提升系统的性能和可靠性[^2]。 DERA创建了一种模拟人类协作的工作流程,在这个过程中有两个主要角色: - **研究者**:负责收集必要的信息、解析输入内容以及发现潜在的关键要素; - **决策者**:基于接收到的数据作出最终决定,并可能返回给用户提供进一步指导或者确认请求的结果。 这种设计不仅提高了透明度还增强了用户的信任感,因为每一步骤都是公开可见并与用户互动紧密相连。 #### 上下文学习与推理能力 除了上述提到的角色划分外,LLM本身所具备的强大特性也是构建有效代理不可或缺的一部分。相较于传统的小规模语言模型,LLM拥有更出色的上下文理解和逻辑推断技能,这使得它们能够在复杂场景中更好地理解意图并给出恰当回应[^1]。 ```python def process_user_input(user_message, context_history=None): """ 使用LLM处理用户消息 参数: user_message (str): 用户发送的消息文本 context_history (list of str, optional): 历史对话记录,默认为空列表 返回: tuple: 包含两个元素的元组, 第一个是响应字符串, 另一个是更新后的context_history. """ if not context_history: context_history = [] # 更新历史记录 updated_context = [*context_history, user_message] # 调用预训练好的LLM获取回复建议 response_suggestion = call_large_language_model(updated_context) return response_suggestion, updated_context # 模拟调用实际的大规模语言模型API函数 def call_large_language_model(contexts): pass # 实现细节省略... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值