最全!医疗领域DeepSeek应用指南,含20+场景指令,覆盖科研 | 临床 | 医院管理 | 医疗信息化(可下载)

未来不是AI淘汰人类,而是会AI的人淘汰不会AI的人

2025年,deepseek进入公众视野,其R1模型展现出了远超同行的推理能力,深度思考模式下给出的回复常常会惊艳用户,告别繁琐的prompt模板,人们在日常工作使用时体验有了跨越式的提升。

本次小编针对医疗领域下科研教学、临床、医院管理、医疗信息化四大方面,整理了20+场景下的指令模板,希望可以让您在deepseek的使用中获得灵感和帮助。

01 deepseek极速体验指南

三步快速入门

1、三步快速入门

  • 访问入口

网页版:访问官方网站(https://www.deepseek.com/),直接在线使用,无需安装

  • 身份认证:

使用手机号可快速登录

  • 问题输入:

deepseek输入区域有两个核心功能,【深度思考】和【联网搜索】

(图片来自deepseek)

【深度思考】

可以通过逻辑推理、知识整合等方式,给出有深度的回答。

适用场景:学术研究、复杂问题分析、决策建议等。

特点:回答细致、逻辑清晰、适合需要深入思考的场景。

【联网搜索】

可以实时访问互联网,为你查找最新的信息、新闻、数据等。如果你需要了解实时动态或查找特定资料,我可以快速帮你完成。

适用场景:查找实时新闻、最新数据、特定资料等。

特点:信息及时、来源广泛、适合需要最新信息的场景。

2、基础能力

基础的附件上传、网页访问、总结洞察、表格生成、数据分析、文章撰写都可以做到。

还可以让它生成PS脚本、Markdown文本、SQL查询、代码生成、Excel表达式、Mermaid代码…配合其他软件使用可以事半功倍。

(图片来自deepseek生成)

3、提问公式

STAR提问法:Situation(临床场景)+ Task(核心任务)+ Action(预期动作)+ Restriction(约束条件)
示例:患者65岁糖尿病患者(S),需制定术后康复方案(T),请提供营养管理模块(A),符合2023ADA指南(R)

02 医疗领域各场景常用指令

落地难度说明:

★公网直接使用:无需敏感数据,通常基于公开指南或模拟数据生成。

★★需基础数据脱敏:需去除敏感信息。

★★★需私有化部署/系统对接:涉及关键数据或数据库,大概率无法在公网直接使用,需本地化部署或系统集成。

注:内容由作者个人产出,使用还需自行斟酌、灵活使用。

一、科研教学

【实验设计优化】

S: 基于[XX靶点]作用机制研究;T: 设计[三臂随机对照]实验方案;A: 输出符合[GLP规范]的实验流程;R: 附动物伦理审查要点清单及生物样本脱敏要求

【统计分析】

S: 我要进行科研数据分析,附件包含[RCT数据(n=300)];T: 进行[协方差]分析;A: 生成[混合效应模型SAS代码];R: 需多重检验校正

【虚拟病例生成】

S: 我要进行[呼吸衰竭]教学,需要生成虚拟病例;T: 创建[5个CCMTV标准病例];A: 含[动态病情演变逻辑树];R: 注意血气分析数值区间要真实

【教案生成】

S: 我要为住院医师培训;T: 需要生成[糖尿病]培训课件;A: 按[2023年ADA指南]设计内容;R: 标注指南推荐等级及参考文献

【文献综述辅助】

S: 我正在研究[XX疾病的新型治疗方法],需要整理相关文献;T: 搜索[近5年核心文献的核心要点];A: 基于我提供的研究方向和关键词,提取文献中的关键数据、研究方法和结论;R: 输出一份结构化综述报告,包含研究趋势、争议点和未来研究方向

二、医院管理

【手术质量分析】

S: 我院需提升[腔镜手术]质量;T: 分析近1年[200例]手术数据;A: 按[Clavien-Dindo分级]统计并发症率;R: 输出改进方案及关键指标监控表

【科室运营分析】

S: 我是[XX科]主任,结合附件的[XXX]数据;T: 构建[RBRVS绩效模型];A: 输出[科室权重雷达图];R: 信息脱敏

【政策趋势分析】

S: 我需要[了解县域医共体相关政策发展];T: 请帮我总结最新政策文件;A: 提取关键政策要点及实施建议;R: 输出政策解读报告及医院应对策略

【纠纷案例库构建】

S: 结合[近2年200例投诉记录],如附件;T: 分类整理高频问题;A: 生成[预警清单及应答话术];R: 严格匿名化处理

三、医疗信息化

【互联互通测评自查】

S: 我院在做[互联互通测评];T: 按照[互联互通4甲标准];A: 输出自检清单;R: 要符合最新的国家要求

【网络拓扑图、UML制作】

S: 我需要撰写一份技术文档,[描述AI辅助诊断决策的原理];T: 使用Mermaid语法绘制AI辅助诊断决策的原理图;A: 包含数据输入、模型处理、决策输出等关键环节;R: 输出Mermaid代码及对应的流程图

【信息安全管理制度撰写】

S: 我院需[制定信息安全管理制度];T: 参照[《网络安全法》及《数据安全法》];A: 编写[制度文档];R: 包含[权限管理、数据备份、应急响应]等内容

【门诊数据趋势分析】

S: 我有[过去一年的门诊]数据,如附件;T: 分析[门诊量的月度趋势];A: 使用[Excel或Python生成趋势图];R: 输出包含峰值和低谷的分析报告

【患者年龄分布分析】

S: 我有[最近一年门诊的患者年龄]数据,如附件;T: 分析[患者年龄分布];A: 使用[Excel或Python生成年龄分布直方图];R: 输出年龄分段统计表

【科室工作量对比】

S: 我有[各科室过去三个月的工作量]数据,如附件;T: 对比[各科室的工作量];A: 使用[Excel生成柱状图];R: 输出工作量对比报告及排名

【系统需求说明书】

S: 计划采购[电子病历系统];T: 编写[招标技术规格书];A: 参照《电子病历系统功能应用水平分级评价标准》;R: 明确[数据接口标准及验收指标]

四、临床

【疾病预测】

S: 我有[某疾病患者的临床数据],如附件;T: 构建疾病预测模型;A: 使用机器学习算法(如随机森林)进行预测;R: 输出预测结果及模型评估报告

【智能随访记录整理】

S: 我有如下随访记录,详见附件,内容为[肿瘤术后患者的恢复情况];T: 将记录整理为结构化表格;A: 提取关键信息(如症状、用药、复查时间、患者反馈);R: 生成Excel表格,包含患者ID、随访日期、症状描述、用药情况、复查计划等字段

【个性化患教材料】

S: 我要做一份[糖尿病足预防]患教文章;T: 按患者文化程度分版(初中/大学);A: 嵌入[互动式风险评估问卷];R: 文章要[专业有依据]

【制定个性化治疗方案】

S: 我是[内分泌科]医生要为[2型糖尿病]患者(65岁/男性/肾功能不全);T: 制定一份[降糖方案];A: 结合[2024CDS指南];R: 标注药物禁忌及eGFR调整剂量表

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### DeepSeek医疗领域应用案例和技术 #### 多模态理解能力提升医疗服务质量[^2] Deepseek多模态大模型Janus-Pro-7B展示了其强大的跨领域适应性,在医疗影像分析方面取得了显著成果。通过对五种常见的医学影像图进行测试,该模型能够识别并解释X光片、CT扫描等多种类型的图像数据,成功检测到有价值的异常情况,并提供了一定程度上的诊断支持。 尽管对于心电图的解读效果不明显,但在其他四种类型——包括但不限于肺部结节筛查、骨折判断等方面表现优异。值得注意的是,这些成就是在一个未经特别针对医疗场景调优的基础版本上实现的;这意味着随着进一步的研发投入与定制化改进,未来有望获得更加精确可靠的辅助诊疗工具。 #### 提高工作效率和服务水平[^1] 借助于DeepSeek-V2这样的先进AI解决方案,医疗机构可以有效缩短患者等待时间,减少误诊率的同时也减轻了医护人员的工作负担。自动化处理流程使得大量常规性的初步评估工作得以快速完成,从而让专业人士可以把更多精力投入到复杂病例的研究当中去。 此外,基于云端部署的服务模式允许不同地区的医院共享同一套高质量的人工智能平台资源,促进了优质医疗资源向基层延伸覆盖的可能性,有助于解决地域间存在的服务水平差异问题。 ```python # 假设这是用于加载预训练好的DeepSeek V2模型的一个简化版Python脚本片段 from deepseek import load_model, preprocess_image model = load_model('janus_pro_7b') # 加载预先训练过的Janus Pro 7B模型 image_path = 'path_to_medical_scan.png' # 替换为实际图片路径 processed_img = preprocess_image(image_path) # 对输入图像做必要的前处理操作 prediction = model.predict(processed_img) # 执行预测任务获取结果 print(f"Predicted diagnosis: {prediction}") # 输出预测结论 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值