论文选题与核心问题
-
Prompt 1: “请聚焦[研究领域]内一个您认为最被忽视或误解的重要现象。 这个现象在现有研究中是如何被处理的?您认为现有研究的不足之处在哪里?请明确指出您研究的核心问题,并阐述其理论和实践意义。”
-
目的: 引导您关注领域内具有挑战性和创新性的问题,鼓励批判性思维,并强调研究的价值。
-
Prompt 2: “假设您要用一个核心概念来重新审视[研究领域]的经典问题。 您选择的核心概念是什么?您将如何运用这个概念来提供新的视角和解释?请构建一个初步的概念框架,并阐述其创新之处。”
-
目的: 鼓励概念创新和理论视角的新颖性,强调运用核心概念进行深入分析。
-
Prompt 3: “请您从一个具体的社会问题或实践困境出发,提炼出一个具有学术研究价值的核心问题。 这个社会问题或实践困境是什么?它背后蕴含着哪些值得深入研究的学术问题?您的研究将如何回应这个社会问题或实践困境?”
-
目的: 强调问题导向的研究,鼓励从现实问题中提炼学术问题,并注重研究的社会责任感。
-
Prompt 4: “请您设想,如果您的研究能够推翻或修正[领域内]一个重要的传统观点,您最希望挑战哪个观点? 这个传统观点是什么?您认为它可能存在的局限性在哪里?您的挑战将基于哪些关键证据或逻辑推理?”
-
目的: 鼓励挑战权威,提出颠覆性观点,强调基于证据和逻辑的学术批判。
研究设计与论证逻辑
-
Prompt 5: “请您详细阐述您的研究方法选择,并论证这种方法是解决您研究问题的最佳路径。 您考虑过其他方法吗?为什么最终选择了这种方法?请强调您方法的适用性和优势,并预见可能存在的挑战。”
-
目的: 强调研究方法选择的 обоснование (justification),鼓励深入思考方法论问题,并展现对方法局限性的认识。
-
Prompt 6: “请您构建论文的核心论证链条,确保论证的严密性和逻辑性。 您的论证起点是什么?您将如何层层递进,最终得出结论?请绘制一个论证流程图,并检查是否存在逻辑漏洞或跳跃。”
-
目的: 强调论文的逻辑结构和论证的严密性,引导构建清晰的论证框架,避免逻辑谬误。
-
Prompt 7: “请您思考,为了使您的研究结论更具说服力,您需要提供哪些关键证据? 这些证据是来自一手数据还是二手数据?您将如何收集、分析和呈现这些证据?请详细规划您的证据链条。”
-
目的: 强调证据的重要性,引导思考如何构建强有力的证据链条来支撑研究结论。
-
Prompt 8: “请您预设您的研究可能遇到的最主要的质疑或反驳。 这些质疑或反驳可能来自哪些方面?您将如何回应这些质疑或反驳?请提前准备好您的反驳策略,以增强论文的robustness。”
-
目的: 鼓励批判性自我反思,预见潜在质疑,并提前准备反驳,提升论文的学术深度和严谨性。
学术规范与语言表达
-
Prompt 9: “请您精选[领域内]最具影响力的5-10篇代表性文献,深入剖析其核心观点、研究方法和局限性。 您的文献综述将如何超越简单的文献罗列,展现您对领域前沿的深刻理解和批判性思考?”
-
目的: 强调文献综述的深度和批判性,鼓励深入分析代表性文献,展现学术洞察力。
-
Prompt 10: “请您在论文中准确、规范地使用学术术语,并避免使用模糊或口语化的表达。 对于关键术语,请给出明确的定义和操作化解释。请检查论文的术语使用,确保其专业性和严谨性。”
-
目的: 强调学术语言的规范性和专业性,避免非学术语言的干扰,提升论文的学术性。
-
Prompt 11: “请您在论文写作过程中,始终保持客观、冷静的学术语气,避免主观臆断或情绪化表达。 您的论证应基于事实和逻辑,而非个人观点或偏好。请检查论文的语气,确保其客观性和学术性。”
-
目的: 强调学术写作的客观性和理性,避免主观性和情绪化,保持严谨的学术态度。
-
Prompt 12: “请您在完成论文初稿后,从一个完全不了解您研究领域的学者的角度,审视您的论文。 您的论文是否能够清晰地传达您的研究问题、方法、发现和结论?是否存在任何理解障碍?请根据这个角度进行修改,提升论文的可读性和传播性。”
-
目的: 强调论文的可读性和传播性,引导从读者角度审视论文,提升论文的清晰度和易懂性。
论文价值与创新性
-
Prompt 13: “请您在论文的讨论部分,深入阐述您的研究发现对现有理论的贡献或修正。 您的研究填补了哪些理论空白?深化或拓展了哪些理论认识?请明确指出您的理论贡献,并避免泛泛而谈。”
-
目的: 强调论文的理论贡献,引导深入思考研究的理论价值,并清晰地阐述理论贡献。
-
Prompt 14: “请您思考,您的研究发现可能对[实践领域]产生哪些潜在的应用价值或启示? 您的研究结果如何为解决实际问题提供参考或借鉴?请具体阐述您的实践价值,并避免过度夸大。”
-
目的: 强调论文的实践价值,引导思考研究的实际应用意义,并客观地评估实践价值。
-
Prompt 15: “请您总结您的论文最核心的创新点,并用简洁明了的语言概括出来。 您的论文在选题、理论、方法、发现或结论等方面,有哪些独到之处?请提炼出您的创新点,并突出其学术价值。”
-
目的: 强调论文的创新性,引导提炼核心创新点,并突出其学术价值,使论文更具竞争力。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。