前言
智能客服机器人通过其高效、全天候的服务能力,能够显著提升客户体验,降低企业运营成本,并在多个行业中发挥重要作用。智能客服机器人适用于多种场景,以下是一些常见的应用领域:
1. 电商领域
售前咨询:解答客户关于商品规格、价格、发货时间等问题,提供个性化商品推荐。
售后服务:处理退换货、投诉等事宜,降低售后成本。
促销活动支持:在购物高峰期间缓解人工客服压力。
2. 旅游和酒店业
预订服务:协助客户预订酒店、机票、门票,提供实时价格和库存信息。
行程规划与变更:根据客户需求推荐旅游线路,处理行程变更。
实时信息更新:推送航班状态、天气变化等信息。
3. 教育行业
课程咨询:解答学生和家长关于课程安排、学习资源的问题。
在线答疑:为学生提供实时的学术问题解答。
个性化学习建议:根据学生的学习历史提供学习资源推荐。
4. 餐饮行业
菜品推荐与订餐:为顾客推荐菜品,处理外卖配送。
加盟咨询:解答加盟资质、费用等问题,协助填写加盟申请。
5. 人力资源
员工入职指导:提供公司政策、福利查询等服务。
内部支持:处理员工关于IT、HR等问题的咨询。
6. 社交媒体管理
用户咨询处理:解答用户问题,维护社区秩序。
内容举报与规则解释:处理用户举报,解释社区规则。
在dify上开发一个智能客服机器人
要搭建一个智能客服机器人,需要完成知识库的上传和应用的开发,当然这里的开发是不需要写代码的哈。
一、上传知识库
1、创建知识库
在创建知识库的过程中,可以添加多个文件
也可以在一个文件中添加多个分段(将问题和答案整理后按照上传)
2、测试验证知识库
这里我以美团订单常见咨询问题为例进行上传分片后,进行召回测试,可以看到测试结果,返回了3个片段。验证成功
3、增加知识库内容
随着业务的发展,企业积累的知识条目越来越多,可以在知识库中通过添加分段或者添加文件的方式上传知识内容
二、开发一个聊天助手
1、创建一个应用
2、节点信息
开始节点——无需改动
知识检索节点:增加知识库,查询变量指定SYS.QUERY
LLM节点:指定上线文和用户消息、系统消息
直接回复节点:添加LLM的回复
三、发布使用
用户输入咨询问题,聊天助手检索知识库中的内容进行回答
由下图可以看到,回答的问题是分数最高的第15个片段
知识库中的片段:
DIFY还提供了API的使用方式以及代码嵌入的方式,非常方便我们将开发好的客服机器人嵌入到业务系统进行演示
1、嵌入网站的方式
a、获取到代码片段
b、复制代码
c、创建一个txt文件,将上图的代码拷贝到文件中,然后把文件的后缀名称改成.html
d、双击打开页面进行对话
2、API的方式
a、点击打开api文档页面
b、获取密钥,按照接口规范进行对接接口
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。