TPAMI 2025 | 图基础模型:概念、机遇和挑战

近日,北邮GAMMA Lab发布的图基础模型观点性文章被CCF-A类期刊TPAMI接收。该论文首次提出了图基础模型的概念,对其进行了深入讨论,并展望了其未来发展方向。

标题:Graph Foundation Models: Concepts, Opportunities and Challenges

链接:https://ieeexplore.ieee.org/document/10915556

摘要:基础模型已成为多种人工智能应用中的关键组件,并在自然语言处理及其它多个领域展示了显著的成功。同时,图机器学习领域正在经历从浅层方法到更为复杂的深度学习方法的范式转变。基础模型在泛化和适应能力方面的表现激励了图机器学习的研究者讨论开发新图学习范式的可能性。这种新范式设想模型能够在大量的图数据上进行预训练,并能够适应各种图任务。尽管对此兴趣日益增长,但在这一新兴领域中,明显缺乏明确的定义和系统的分析。为此,本文介绍了图基础模型(Graph Foundation Models, GFMs)的概念,并对其关键特性和底层技术进行了详尽的解释。我们根据现有工作对图神经网络和大型语言模型的依赖程度,将其分类为三个不同的类别。除了对GFMs当前状态提供一个全面的回顾之外,本文还展望了在这个快速发展的领域中未来研究的潜在方向。

图1展示了深度图学习与图基础模型之间的区别。二者的区别在于:深度图学习通过对特定数据集进行端到端的训练来解决特定任务。相比之下,图基础模型(GFMs)是在广泛的图数据上进行预训练的,并能够适应各种下游图任务,预期能够展示出涌现和同质化的能力。

图1 深度图学习与图基础模型之间的区别

图2展示了语言基础模型和图基础模型的相似性和差异性,并将差异分为内部差异和外部差异。

图2 语言基础模型和图基础模型的相似性和差异性

图3到图5展示了三种图基础模型范式:基于GNN的方法、基于LLM的方法和基于GNN+LLM的方法。

图3 基于GNN的方法

图4 基于LLM的方法

图5 基于GNN+LLM的方法

相比于之前在arXiv发布的版本(题目:Towards Graph Foundation Models: A Survey and Beyond),TPAMI的正式版本(称为V4版本)有以下新亮点:

  1. 标题修改为“Graph Foundation Models: Concepts, Opportunities and Challenges”。

  2. 在2.1.1节,进一步解释了非欧式数据的定义、特性和挑战。

  3. 在第4到6章,新增了十余篇最新顶会上有关GFM的论文,他们来自KDD2024, NeurIPS2024, EMNLP2024, WWW2024, SIGIR2024, KDD2025和AAAI2025。

  4. 在4.4、5.4和6.4节,我们讨论了有关时序图、超图和异质图的研究。

  5. 在第7章,我们增加了有关GFM处理跨域数据的方法讨论。

  6. 在7.3.2节,我们增加了有关处理噪声、数据不平衡、数据不完整、多模态特征等问题作为未来方向。

  7. 我们对论文的引用进行了全面更新,arXiv上的论文比例已从20/222(9.0%)降至8/230(3.5%),确保了引用的质量和时效性。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值