通俗理解拉氏变换

本文将从通俗的角度看待拉普拉斯变换。

  • 发明者

奥列弗.赫维赛德,维多利亚时期英国人,全靠自学,听力残疾。很多人熟悉赫维赛德是因为MATLAB有一个赫维赛德(Heaviside)函数。
在这里插入图片描述
赫维赛德简化了麦克斯韦方程组:即变化的电场产生磁场,变化的磁场产生电场。让20个方程组便成了4个。
**赫维赛德另一个贡献就是我们今天要说的运算微积分-它可以将常微分方程转换为普通代数方程。**赫维赛德是怎么解微分方程的呢?他把微分、积分运算用一个简单的算子来代替。

在这里插入图片描述
也就是说,在某种算子下,积分和微分对应的是倒数关系,至于算子 p 代表什么,赫维赛德也没有多解释,在缺乏严密数学基础的情况下,人家直接放在文章就用了,还发表了。比如常见的一个二阶常微分方程,
在这里插入图片描述
如果用赫维赛德的微分算子变换一下,就变成了代数表达式。
在这里插入图片描述
赫维赛德之所以这么做,是因为他的“物理直觉”告诉他这么做,就是这么硬。这显然是一种开外挂的行为,因此也受到当时的主流数学家们们的攻讦,他们认为赫维赛德就是十足的“民科”,文章没什么理论依据,自己在那空想呢。当然,赫维赛德也不是弱鸡,科学家怼起人来,也是毫不含糊:“因为我不能理解消化过程就拒绝晚餐吗?不,只要我满意这个结果。”
好了,扯了那么远,有童鞋已经不耐心了:这些和拉普拉斯变换有什么关系?谜底就是:赫维赛德的微积分算子,就是拉普拉斯变换的前身。

  • 傅里叶变换(轻量版拉普拉斯变换)

在说拉普拉斯变换以前,我们要先提一下傅里叶变换,这可以看成是轻量版的拉普拉斯变换。傅里叶变换说的是什么事?说的是自然界的很多现象,都可以用三角函数进行分解。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

clc;clear;
h = animatedline;
xl=xlabel('cos(\omegat)');% 
yl=ylabel('sin(\omegat)');% 
grid on;
title('\omega = 1rad/s   Made by J Pan')
axis([-1,1,-1,1]);
axis square;
N = 100;
t=linspace(0,2*pi,N);
w=1;
x=cos(w*t);
y=sin(w*t);
a = tic; % start timer
for k = 1:N
    addpoints(h,x(k),y(k));
    hold on
    quiver(0,0,x(k)*1.1,y(k)*1.1)
    b = toc(a); % check timer
    if b > (1/90)
        drawnow % update screen every 1/30 seconds
        a = tic; % reset timer after updating
    end
end

在这里插入图片描述
在这里插入图片描述
你能想象到很多曲线,都可以用这些不同频率,连续旋转的圆,通过线性叠加得到,而傅里叶定律,就是对这个结论的数学描述。
傅里叶定律说:只要一个函数满足如狄利赫里条件,都能分解为复指数函数之和,哪怕是如拉格朗日提到的带有棱角的方波函数。狄利赫里条件为:
在这里插入图片描述
其中可去间断点和跳跃间断点属于第一类间断点
于是就可以很好的解释拉格朗日和傅里叶之间的争论了——拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号,棱角处会有很小高频波动(吉布斯现象)。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅里叶也是对的。一个从数学家的角度,一个从工程师的角度。

  • 拉普拉斯变换-原来就是这么回事
    傅里叶变换能帮我们解决很多问题,一经问世后便受到广大工程师们的喜爱,因为它给人们提供了一扇不同的窗户来观察世界,从这个窗户来看,很多事情往往变得简单多了。但是,别忘了,傅里叶变换有一个很大局限性,那就是信号必须满足狄利赫里条件才行,特别是那个绝对可积的条件,一下子就拦截掉了一大批函数。比如函数 f(t)=t^2 就无法进行傅里叶变换。这点难度当然拿不到聪明的数学家们,他们想到了一个绝佳的主意:把不满足绝对的可积的函数乘以一个快速衰减的函数,这样在趋于无穷 时原函数也衰减到零了,从而满足绝对可积。
    在这里插入图片描述
    在这里插入图片描述
    这里我要补充一下,不是为了保证一直为衰减,指数函数,要衰减,在负半轴也是衰减的,要增加,在正负半轴都是增加的。是因为在我们关心的系统中,不对时间的负半轴作分析。因此,我们更多使用单边的拉普拉斯变换,而不是使用双边的拉普拉斯变换,这样的系统称之为因果系统不需要考虑 t=0 时的系统初始条件。
    我知道大部分人前面的数学推导没什么兴趣,接下来就是放彩蛋的时刻了,很多童鞋会说不管傅里叶变换或者拉普拉斯变换是什么细节,你能说点有意思的,让人能记忆深刻的信息吗?
    在这里插入图片描述
    在这里插入图片描述
clc;clear;
h = animatedline;
h1=gcf;
view(3);
xl=xlabel('cos(\omegat)');% 
yl=ylabel('sin(\omegat)');% 
zl=zlabel('t');% 
set(xl,'Rotation',30);% 
set(yl,'Rotation',-30);%
grid on;
title('\omega = 1rad/s   Made by J Pan')
axis([-1,1,-1,1,0,4*pi])
N = 200;
t=linspace(0,4*pi,N);
w=1;
x=cos(w*t);
y=sin(w*t);
a = tic; % start timer
for k = 1:N
    addpoints(h,x(k),y(k),t(k));
    hold on
    line([0 x(k)],[0 y(k)],[t(k) t(k)],'Color','red')
    b = toc(a); % check timer
    if b > (1/90)
        drawnow % update screen every 1/30 seconds
        a = tic; % reset timer after updating
    end
end

在这里插入图片描述
在这里插入图片描述

clc;clear;
h = animatedline;
h1=gcf;
view(3);
xl=xlabel('cos(\omegat)');% 
yl=ylabel('sin(\omegat)');% 
zl=zlabel('t');% 
set(xl,'Rotation',30);% 
set(yl,'Rotation',-30);%
grid on;
title('\omega = 1rad/s   Made by J Pan')
axis([-1,1,-1,1,0,4*pi])
N = 200;
t=linspace(0,4*pi,N);
w=1;sig=-0.2;
x=exp(sig*t).*cos(w*t);
y=exp(sig*t).*sin(w*t);
a = tic; % start timer
for k = 1:N
    addpoints(h,x(k),y(k),t(k));
    hold on
    line([0 x(k)],[0 y(k)],[t(k) t(k)],'Color','red')
    b = toc(a); % check timer
    if b > (1/90)
        drawnow % update screen every 1/30 seconds
        a = tic; % reset timer after updating
    end
end

螺旋曲线和衰减函数的乘积:一个半径不断减小的螺旋曲线。从不同的平面看,就是不断衰减的正弦或者余弦曲线,从复平面来看,是一个半径不断减小的圆。
在这里插入图片描述

从另一个角度看拉普拉斯变换 - 知乎

总结一下:傅里叶变换是将函数分解到频率不同、幅值恒为1的单位圆上;拉普拉斯变换是将函数分解到频率幅值都在变化的圆上。因为拉普拉斯变换的基有两个变量,因此更灵活,适用范围更广。

本文大量引用了
从另一个角度看拉普拉斯变换 - 知乎
对此表示感谢


免责声明:
    本文转自网络文章,转载此文章仅为个人收藏,分享知识,如有侵权,请联系博主进行删除。
    原文作者:ciscomonkey 原文地址:https://blog.csdn.net/ciscomonkey/article/details/85067036

  • 4
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 傅里叶变换是一种数学工具,可以将一个信号分解成多个不同频率的正弦和余弦波的叠加。换句话说,它可以把一个复杂的信号分解成多个简单的频率成分。通俗地说,就好像把一个复杂的乐曲分解成不同音调和音量的音符一样。傅里叶变换可以在信号处理、图像处理、音频处理等领域中得到广泛的应用。 ### 回答2: 傅里叶变换是一种数学工具,用于将函数从时域转换到频域。它的基本思想是,任何周期性信号(或非周期性信号通过一些处理)都可以表示为一系列不同频率的正弦波的叠加。 傅里叶变换的过程可以简单描述为以下几个步骤: 1. 将时域函数(通常是一个连续函数)分解成一系列正弦波的叠加。这些正弦波具有不同的幅度和频率。 2. 使用复数形式表示正弦波,其中幅度和相位可以用复数的实部和虚部表示。 3. 对每个频率的正弦波进行傅里叶变换,得到频域中的复数表示。 4. 将所有频率上的复数进行叠加,得到整个频域上的函数表示。 通过傅里叶变换,我们可以更好地理解一个信号在不同频率下的特征和分布情况。傅里叶变换可以将信号分解成不同频率的成分,这些成分可以是周期性的波动或者是非周期性的脉冲。通过对每个频率成分的幅度和相位进行分析,我们可以了解信号中不同频率的贡献和重要性。 傅里叶变换在信号处理、通信、图像处理等领域有广泛应用。例如,在音频处理中,可以通过傅里叶变换将声音信号从时域转换到频域,用于音频降噪、均衡器调节等处理。在图像处理中,傅里叶变换可以将图像从空域转换到频域,用于图像增强、滤波等应用。 总之,傅里叶变换提供了一种用于分析信号在不同频率上特征的工具,可以将信号从时域转换到频域,更好地理解和处理各种信号。 ### 回答3: 傅里叶变换是一种数学工具,用于将一个函数在时间(或空间)域中的表达方式转换为其在频率域中的表达方式。它得名于法国数学家傅里叶,他发现了这种变换的数学原理。 我们知道,任何在时间(或空间)域中的函数都可以表示为许多不同频率的正弦函数的叠加。傅里叶变换就是将这个函数分解为许多频率成分,并且确定每个频率成分的振幅和相位。这样做的好处是,它可以帮助我们理解一个信号或波形的频谱特性,即不同频率成分的强度和分布情况。 一个简单的例子是音乐信号的频谱分析。如果我们把一首音乐看作是一个在时间上变化的函数,傅里叶变换可以将它分解成许多不同频率的音调,并且确定每个音调的振幅和相位。这样我们就可以知道音乐中都包含哪些音调,并且它们的强度如何分布。 在实际应用中,傅里叶变换被广泛应用于信号处理、图像处理、通信等领域。通过将一个信号或图像转换到频率域,我们可以对其进行滤波、去噪、增强等处理,从而得到我们想要的结果。 总之,傅里叶变换是一种将一个函数在时间(或空间)域中的表达方式转换为其在频率域中的表达方式的数学工具。通过这种变换,我们可以更好地理解和处理信号或波形的频谱特性,从而应用于各种实际问题中。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值