拉氏变换
拉氏变换的理解
一个函数f(t)的Laplace变换定义为
这个式子说的是一件这样的事情:F(s)是实空间函数f(t)在复空间中以为基底的投影。
解释
首先,定义复空间上两个函数f,g的内积为
很容易知道是复空间中的一组正交基。那么根据内积的意义——一个函数与另一个函数的内积,是这个函数在另一个函数方向上的投影,可得实函数f(t)在复空间基底上的投影为
为方便起见,令s=jw表示虚变量。(我们后面可以看到它更深层的意义。)则可将该投影式记为
(这里的s与实数域中的t相对应,都表示空间上的变量)
同理可证f(t)是F(s)在实空间中的投影。
有了实空间中f(t)与复空间中F(s)的一一对应投影关系,我们就可以通过在复空间中对[公式]进行分析和运算,从而获知实空间中f(t)的性质和运算结果。在做这件事情之前,首先需要对实空间和复空间中的运算关系进行定义。
定义微分算子(这里的define等号表示的是对应关系,而不表示相等)
这是因为
(设定初值为0)
从复空间中微分算子的定义就可以看出选择
作为基底的好处了。因为复指数函数有一个最大的优点,就是对它求导等于它自身乘一个数。因此,当我们在实空间中对f(t)求一次导数时,在复空间中只需要将它对应的投影式乘以微分算子s。这样就极大地简化了求导运算。
类似可定义积分算子为
即对f(t)进行一次积分,只需对其投影式除以s。
传递函数的定义
现实的许多系统的输入输出关系都可以用微分方程来描述。比如最简单的,一个RLC电路,给定它两端的电压ui,输出电容上的电压uo。这个系统就可以用微分方程来描述它的I/O关系。一般零初值线性系统的微分方程形式如下:
从理论上讲,描述这个系统的全部固有特征,只需要记录方程左端的系数向量就可以了。但是用常微分方程的方法去研究这个方程解的性质往往十分困难(尤其是在无法用计算机求解高次特征方程的上古年代)。所以为了研究微分方程解的性质的方便,我们把这个方程两端的复空间投影式(Laplace 变换)之比定义为系统的传递函数。即
在常微分方程中,方程左端系数的值决定了方程的通解,而右端函数则决定了方程的特解。特解往往是稳恒的,而通解随时间的变化情况(尤其是它最后能否收敛至0)决定了系统的稳定性。因此方程左端对应的Laplace变换式R(s)显得尤为重要,故称R(s)=0为传递函数的特征方程。
由初等数学中的部分分式可知,任意两个多项式之比(设分子次数不高于分母次数)总能分解为一系列一次分式和二次分式的和。即
由Laplace逆变换可知,只有当分母R(s)=0的根的实部全部小于0时,逆变换得到的f(t)上的指数才是负值,其振幅才会收敛于0。否则,只要有一个根具有正实部,f(t)的结果就会出现正指数,随时间推移,振幅会趋向于无穷大,系统将不可能稳定。对于临界稳定的情况,由于这种系统极易受到干扰而使得根位于正半平面,因此将其归类为不稳定系统。
因此,系统稳定的充分必要条件是:传递函数所有的极点位于左半复平面上。这就引出了如何判断这些根的位置的问题。在可以利用计算机求解高次方程的时代,这已经完全不是一个问题。但是在无法求解这些方程的年代,就需要用一些辅助定理来在不解出方程的前提下判断根的位置,这就是劳斯判据的由来。
此外,如果系统的反馈关系比较复杂,就需要快速地求解传递函数,这就是框图变换、信号流图和梅逊增益公式的应用。
拉氏变换表