无穷级数(二)常数项级数的审敛法

一、正项级数及其审敛法

定义一

如果级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un的各项均为非负实数,即 u n ≥ 0 , n = 1 , 2 , 3 , . . . , u_n\geq0,n=1,2,3,..., un0,n=1,2,3,...,则称此级数为正项级数.

设正项级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un的部分和为 s n s_n sn,显然,数列 { s n } \left\{s_n\right\} {sn}是一个单调递增数列,即 s 1 ≤ s 2 ≤ . . . ≤ s_1\leq s_2\leq ...\leq s1s2...
根据单调数列的性质,可以得到如下结论

定理一

正项级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un收敛的充分必要条件是它的部分和数列有上界,即对一切 n n n s n ≤ M s_n\leq M snM M M M为正常数)
若正项级数的部分和数列无上界,则级数必发散到 + ∞ +\infty +.
根据定理1可得正项级数的一个基本审敛法.

定理二(比较审敛法)

设有两个正项级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}v_n n=1vn,若存在常数 k > 0 k>0 k>0,使 u n ≤ k v n ( n = 1 , 2 , 3 , . . . ) u_n\leq kv_n(n=1,2,3,...) unkvn(n=1,2,3,...)成立,则

  • 当级数 ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}v_n n=1vn收敛时, ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un也收敛;
  • 当级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un发散时,级数 ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}v_n n=1vn也发散.

∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}v_n n=1vn的部分和分别为 s n s_n sn σ n \sigma_n σn,则有 s n ≤ k σ n ( n = 1 , 2 , 3 , . . . ) . s_n\leq k\sigma_n(n=1,2,3,...). snkσn(n=1,2,3,...). { σ n } \left\{ \sigma_n\right\} {σn}有上界时, { s n } \left\{ s_n\right\} {sn}必有上界;而当 { s n } \left\{ s_n\right\} {sn}无上界时, { σ n } \left\{ \sigma_n\right\} {σn}必无上界。由定理一即得定理结论。

为使用方便,下面给出极限形式的比较审敛法.

定理三(比较审敛法的极限形式)

设有正项级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}v_n n=1vn,且 v n > 0 v_n>0 vn>0,若 l i m n → ∞ u n v n = l ( l ≥ 0 或 l = + ∞ ) lim_{n \rightarrow \infty}\frac{u_n}{v_n}=l(l\geq 0或l=+\infty) limnvnun=l(l0l=+),则

  • 0 < l < + ∞ 0<l<+\infty 0<l<+时,级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}v_n n=1vn同时收敛或发散;
  • l = 0 l=0 l=0时,如果 ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}v_n n=1vn收敛,则 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un收敛;
  • l = + ∞ l=+\infty l=+时,如果级数 ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}v_n n=1vn发散,则 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un发散.

特别的,若取 v n = 1 n p v_n=\frac{1}{n^p} vn=np1,则有以下结论.

推论一

对于正项级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un,若 l i m n → ∞ n p u n = l lim_{n\rightarrow \infty}n^pu_n=l limnnpun=l,则

  • 如果 p > 1 p>1 p>1,且 0 ≤ l ≤ + ∞ 0\le l\le+\infty 0l+,那么级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un收敛;
  • 如果 p ≤ 1 p\le 1 p1,且 l > 0 l>0 l>0 l = + ∞ l=+\infty l=+,那么级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un发散;

定理四(比值审敛法,达朗贝尔判别法)

∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un为正项级数, u n > 0 u_n>0 un>0 l i m n → ∞ u n + 1 u n = ρ lim_{n\rightarrow \infty}\frac{u_{n+1}}{u_n}=\rho limnunun+1=ρ,则

  • 0 ≤ ρ < 1 0\le\rho<1 0ρ<1,级数收敛;
  • ρ > 1 \rho>1 ρ>1 ρ = + ∞ \rho=+\infty ρ=+时,级数发散;
  • ρ = 1 \rho=1 ρ=1时,级数可能收敛也可能发散(应改用其他方法判定)

定理五(柯西根值审敛法)

∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un为正项级数,如果 l i m n → ∞ u n n = ρ lim_{n\rightarrow\infty}\sqrt[n]{u_n}=\rho limnnun =ρ,则

  • 0 ≤ ρ < 1 0\le \rho<1 0ρ<1时,级数 ∑ n = 1 + ∞ u n \sum_{n=1}^{+\infty}u_n n=1+un收敛;
  • ρ > 1 \rho>1 ρ>1 ρ = + ∞ \rho=+\infty ρ=+时,级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un发散;
  • ρ = 1 \rho=1 ρ=1时,级数可能收敛也可能发散,即此审敛法失效.

定理六(积分审敛法)

设有单调递减非负函数 f ( x ) ( x ≥ 1 ) f(x)(x\ge1) f(x)(x1),如果 u n = f ( n ) ( n = 1 , 2 , 3 , . . . ) u_n=f(n)(n=1,2,3,...) un=f(n)(n=1,2,3,...),那么级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un与反常积分 ∫ 1 + ∞ f ( x ) d x \int_{1}^{+\infty}f(x)dx 1+f(x)dx有相同的敛散性.

二、任意项级数及其审敛法

如果一个级数只有有限个正项或负项,都可以用正项级数的各种审敛法判定它的敛散性.如果一个级数的正负项均由无限个,那么正项级数的各种审敛法不再适用.

对于任意项级数,其通项可正、可负或为零.下面的柯西审敛定理可用于其敛散性的判定.

定理七(柯西审敛原理)

级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un收敛的充分必要条件为:对于任意给定的正数 ε \varepsilon ε,存在有自然数 N N N,使得当 n > N n>N n>N时,都有
∣ u n + 1 + u n + 2 + . . . + u n + p ∣ < ε |u_{n+1}+u_{n+2}+...+u_{n+p}|<\varepsilon un+1+un+2+...+un+p<ε
对一切自然数 p p p成立.

定义二

如果级数的各项正负交错,即形如 ± ∑ n = 1 + ∞ ( − 1 ) n − 1 u n = ± ( u 1 − u 2 + u 3 − . . . ) , u n > 0 \pm\sum_{n=1}^{+\infty}(-1)^{n-1}u_n=\pm(u_1-u_2+u_3-...),u_n>0 ±n=1+(1)n1un=±(u1u2+u3...),un>0,则称此级数为交错级数.(交错级数是一种特殊的任意级数)

定理八(莱布尼茨定理)

如果交错级数 ± ∑ n = 1 + ∞ ( − 1 ) n − 1 u n \pm\sum_{n=1}^{+\infty}(-1)^{n-1}u_n ±n=1+(1)n1un满足条件:

  • u n ≥ u n + 1 ( n = 1 , 2 , 3 , . . . ) u_n \ge u_{n+1}(n=1, 2,3,...) unun+1(n=1,2,3,...)
  • l i m n → ∞ u n = 0 lim_{n\rightarrow\infty}u_n=0 limnun=0

则级数收敛,且其和 s ≤ u 1 s\le u_1 su1,其余项 r n r_n rn的绝对值 ∣ r n ∣ ≤ u n + 1 |r_n|\le u_{n+1} rnun+1.
注意 条件一不满足,级数仍可能收敛.

三、绝对收敛与条件收敛

现在再来讨论任意项级数,前面所讲的对正项级数的审敛法较多,那么能否利用它对任意项级数的敛散性先作粗略的判断?

定义三

如果级数 ∑ n = 1 + ∞ u n \sum_{n=1}^{+\infty}u_n n=1+un各项的绝对值所构成的正项级数 ∑ n = 1 + ∞ ∣ u n ∣ \sum_{n=1}^{+\infty}|u_n| n=1+un收敛,则称 ∑ n = 1 + ∞ u n \sum_{n=1}^{+\infty}u_n n=1+un绝对收敛;如果 ∑ n = 1 + ∞ u n \sum_{n=1}^{+\infty}u_n n=1+un收敛,而级数 ∑ n = 1 + ∞ ∣ u n ∣ \sum_{n=1}^{+\infty}|u_n| n=1+un发散,则称级数 ∑ n = 1 + ∞ u n \sum_{n=1}^{+\infty}u_n n=1+un条件收敛.

定理九

如果 ∑ n = 1 + ∞ u n \sum_{n=1}^{+\infty}u_n n=1+un绝对收敛,则 ∑ n = 1 + ∞ u n \sum_{n=1}^{+\infty}u_n n=1+un必定收敛.

定理十

∑ n = 1 + ∞ u n \sum_{n=1}^{+\infty}u_n n=1+un绝对收敛,则 ∑ n = 1 + ∞ u n + \sum_{n=1}^{+\infty}u_n^+ n=1+un+ ∑ n = 1 + ∞ u n − \sum_{n=1}^{+\infty}u_n^- n=1+un均收敛;若 ∑ n = 1 + ∞ u n \sum_{n=1}^{+\infty}u_n n=1+un条件收敛,则 ∑ n = 1 + ∞ u n + \sum_{n=1}^{+\infty}u_n^+ n=1+un+ ∑ n = 1 + ∞ u n − \sum_{n=1}^{+\infty}u_n^- n=1+un均发散到 + ∞ +\infty +.

这里 ∑ n = 1 + ∞ u n + \sum_{n=1}^{+\infty}u_n^+ n=1+un+ ∑ n = 1 + ∞ u n \sum_{n=1}^{+\infty}u_n n=1+un全体正项构成的级数, ∑ n = 1 + ∞ u n − \sum_{n=1}^{+\infty}u_n^- n=1+un ∑ n = 1 + ∞ u n \sum_{n=1}^{+\infty}u_n n=1+un全体负项变号后构成的级数,它们都是正项级数.

定理十一

绝对收敛级数经改变项的次序后所得的新级数仍绝对收敛,并且级数的和不变(即绝对收敛级数满足加法交换律).

定理十二

∑ n = 1 + ∞ u n \sum_{n=1}^{+\infty}u_n n=1+un ∑ n = 1 + ∞ v n \sum_{n=1}^{+\infty}v_n n=1+vn都绝对收敛,其和分别为 s s s σ \sigma σ,则他们的柯西乘积
∑ n = 1 ∞ ( ∑ k = 1 n u k v n − k + 1 ) = u 1 v 1 + ( u 1 v 2 + u 2 v 1 ) + . . . + ( u 1 v n + u 2 v n − 1 + . . . + u n v 1 ) + . . . \sum_{n=1}^{\infty}(\sum_{k=1}^{n}u_kv_{n-k+1})=u_1v_1+(u_1v_2+u_2v_1)+...+(u_1v_n+u_2v_{n-1}+...+u_nv_1)+... n=1(k=1nukvnk+1)=u1v1+(u1v2+u2v1)+...+(u1vn+u2vn1+...+unv1)+...
仍绝对收敛,且其和为 s σ s\sigma sσ.

written by arycra_07, 2022/3/3.

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AryCra_07

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值