WirelessAgent: Large Language Model Agents for Intelligent Wireless Networks无线领域大模型

Abstract

由于规模和复杂性不断扩大,无线网络日益面临挑战。这些挑战凸显了对先进人工智能驱动策略的需求,特别是在即将到来的 6G 网络中。在本文中介绍 WirelessAgent,这是一种利用大型语言模型 (LLM) 开发能够管理无线网络中复杂任务的 AI 代理的新颖方法。它可以通过高级推理、多模态数据处理和自主决策来有效提高网络性能。演示了 WirelessAgent 在网络切片管理方面的实际适用性和优势。实验结果表明,WirelessAgent能够准确理解用户意图,有效分配切片资源,并始终保持最佳性能。

 INTRODUCTION

随着人类社会的发展和技术的进步,无线网络因其规模、密度和技术多样性的不断扩大而面临着前所未有的复杂性。传统的优化和机器学习方法越来越不足以应对这些挑战,促使 6G 网络转向更先进的人工智能。

最近,增强6G网络的智能化以管理日益增加的网络复杂性、支持人工智能驱动的应用并实现无与伦比的性能已成为共识。然而,现有的无线通信人工智能解决方案往往是针对特定问题的,缺乏通用性。这一限制凸显了迫切需要开发更通用和通用的人工智能算法来解决广泛的无线挑战,迈向该领域的真正智能。这种需求催生了无线通信中人工智能代理的概念,利用大语言模型 (LLM) 的最新进展来自动化各种无线任务。

 大模型在文本理解和生成能力广泛引起关注,在各个领域产生重大的印象,当应用于人工智能代理时,展现了认知能力的潜力,现阶段从自然语言处理到推理和决策的重大扩展。虽然LLM在文本理解和生成方面表现出了卓越的能力,但通用语言任务和无线网络中的实际应用之间存在天然的差距,许多关于LLM的研究仅限于电信语言理解的直接应用。LLM可以作为智能和自主的代理来管理和优化网络运行的全部功能仍未充分开发,特别是它们解释无线数据、分解复杂任务、适应不断变化的条件和利用外部资源的能力。

 本文主要贡献:

1、提出了 WirelessAgent,作为LLM提供四个核心模块的框架:感知、记忆、规划和行动。 WirelessAgent旨在解释多模式输入,相应地自动执行复杂的任务,并在外部知识库和强大工具的帮助下输出解决方案。

2、提供了网络切片管理的概念验证案例研究,证明了 WirelessAgent 在准确理解用户意图、有效分配切片资源以及持续保持最佳性能方面的有效性。

3、概述了 WirelessAgent 未来潜在的研究方向,包括多模式集成、隐私和安全问题以及实际部署和评估。

AGENTS FOR WIRELESS NETWORKS

 LLM对于理解和根据提供的输入生成类人文本至关重要,此属性对于作为开发解释的 AI 代理,并对人类和其他代理的复杂指令做出响应。LLM作为人工智能代理的认知核心,通过多模态感知和工具利用等技术增强其功能,扩大在各个领域的运营范围。LLM的少样本和零样本泛化能力允许灵活地适应新任务,而无需进行大量的再训练。

代理和无线网络的原则:Interaction、Autonomy、Self-improvement。

Interaction——代理应该能够与人类、环境和其他代理进行有效的通信和交互。能够根据每个无线场景的具体要求收集信息、控制参数并优化性能;支持代理之间的协作,通过共享传感数据、计算资源和网络带宽来改进决策和资源管理,从而在异构网络中实现更高效的任务执行。

Autonomy——无人类直接干预的情况下自主运行,能够启动主动策略并完成任务,而无需详细的分步指令。无线网络代理应该能够快速响应电信系统中的即时变化甚至故障,如果没有及时干预,它就需要找出有效的对策并调整其运营策略以避免中断。

Self-improvement——代理应该整合从交互、反馈和环境变化中学习的机制。根据新数据更新其知识库,并提高其应对无线领域新挑战的能力,可以使智能体随着时间的推移而发展,增强其智能和实用性。

THE WIRELESSAGENT FRAMEWORK

Perception

感知模块擅长处理和理解各种形式的输入:

1)文本理解:

LLM可以熟练地进行多语言理解并展现出深入的理解能力。在用户与WirelessAgent的交互过程中,LLMs通过理解用户提供的文本指令(显式请求和隐含意图)来回应用户的需求。通过对话,用户可以发出关于无线通信的复杂技术请求,LLMs将这些指令作为输入,解释技术细节或帮助用户理解无线通信中的复杂概念。LMs通过专业数据的微调,使复杂的无线通信技术语言能够被用户轻松理解,起到了技术与用户之间的桥梁作用。它不仅能向技术人员提供详细的解释,也能够通过简化语言,让非技术背景的用户更好地理解专业术语。

2)多模态处理

多模态数据是指从不同来源获取的数据,包括2D/3D视觉数据、无线电信号等。通过传感器,WirelessAgent能够自主感知周围环境并收集这些多模态数据。这类数据包含了丰富的信息,例如对象的属性(大小、颜色、形状等)、空间关系(距离、位置等),以及无线信道条件(信号强度、干扰情况等)。这些信息为代理提供了一个更广阔的背景和更精确的环境理解,使其能够更好地理解周围环境。

Memory

记忆机制使WirelessAgent能够全面分析过去和当前的数据,增强其在无线智能应用中管理动态信息的能力。在感知到观察结果后,智能体将通过内存写入操作存储其中的一部分以供进一步使用。此外,过去的错误、成功的干预以及从这些经验中学到的行为都会被记录下来以供将来参考。

WirelessAgent 会存储用户身份 (ID) 和位置、信道状态信息 (CSI)、网络状况和故障排除步骤等详细信息然后对这些信息进行结构化和索引以供将来访问。

数据的结构化和索引

  • 结构化存储:所有收集到的这些信息,包括用户ID、位置信息、CSI、网络状况以及故障排除的细节,都会经过结构化存储。这意味着这些数据将按照一定的格式和规则被组织起来,以便于系统处理和检索。结构化数据便于分类、过滤和排序,提高了数据管理的效率。

  • 索引机制:通过对数据进行索引,系统可以更加高效地检索历史记录。例如,如果在未来的某个时刻同一位置再次出现类似的连接问题,WirelessAgent能够快速查找之前的记录,查看解决方案以及相关问题细节。这种索引机制确保了数据在需要时能够被快速、准确地检索。

Plann

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值