机器人的分类
机械臂机器人
串联机器人
就是每一节机械臂之间通过关节轴链接成为一串机械臂的一组机械臂。
并联机器人
电机并不是像串联机器人一样,一个电机+一个连杆+一个电机,这种方式连接起来。而是各自电机控制各自独立的连杆,所有连杆末端共同控制一个末端执行器。
混合机器人
机器人学需要线性代数的矩阵基础
线性代数
矩阵满足结合律,不满足交换律。
满足交换律的是逆矩阵。
旋转矩阵
平移矩阵
正交矩阵
如果一个矩阵的每一列向量两两正交(即内积为零),并且每个列向量的模长为1(即单位向量),则矩阵是正交矩阵。
正交矩阵,正交矩阵的逆矩阵,正交矩阵的转置两两相等。
行列式值的几何意义
二阶行列式是在二维中的平行四边形;
三界行列式是三维中的六面体的体积;
矩阵的几何意义
矩阵相加的几何意义
改变坐标系当中点的坐标值。
矩阵相乘的几何意义
从图中可以看出,就是三维坐标中的三个点的坐标经过一个变换矩阵矩阵,变换成为这个坐标系内的另一个三个点的坐标。
所以矩阵相乘本质上就是改变点的坐标。
旋转矩阵
只有旋转时:目标坐标系=基坐标系*旋转矩阵
目标坐标系的坐标是基于基坐标系的坐标旋转+移动得出的。
齐次变换矩阵在机器人中的作用
齐次变换矩阵的几何意义:
齐次变换矩阵用T来表示,是一个4*4的方正。
齐次变换矩阵包括从基坐标系到目标坐标系的旋转矩阵,以及基坐标系原点到目标坐标系原点的向量。
所以齐次坐标系的几何意义就是目标坐标系基于基坐标系旋转再移动所得的坐标系。
所以,如果点r基于目标坐标系的坐标为r1,基于基坐标系的坐标为r0,则点r的最终坐标为(基于全局坐标系,也就是基坐标系的坐标):
r0=T*r1
T是基坐标系到目标坐标系的齐次变换(旋转+移动),r1是基于目标坐标系的,不是基于基坐标系的,所以先通过T确定目标坐标系基于基坐标系的坐标,在T*r1才能得到r基于基坐标系的坐标。
为了配合齐次变换矩阵4*4的维度,点也用4维的行矩阵的转置或者列矩阵表示:
r={x,y,z,1}T
旋转矩阵和齐次变换矩阵看---《新版机器人技术手册》
世界坐标系--基坐标系
一个三维直角坐标系,以其为基准可以描述相机与待测物体的空间位置。
为什么要有世界坐标?
自己的理解:确定唯一且不变的世界坐标系之后,后面所有的坐标系都可以通过与世界坐标的相对关系来进行转换。此时,当我移动或者旋转世界坐标系的时候,通过相对关系可以很快速的得到其他坐标系下的数据。
机器人学(Robotics)
一些基础概念
刚体
刚性物体是一组粒子的集合,其中任意两个粒子之间的距离保持固定,不受物体运动或施加在物体上的力的影响。
“完全不可变形”的物体就是刚体。
自由度
抽象定义:
物体能够对坐标系进行独立运动的数目称为自由度(Degree of Freedom,DOF)。
(就是能够对一个坐标系的所有坐标轴进行平移,旋转的数目,机器人中,一个关节一般只能旋转或者平移,所以一个关节也就是一个自由度,所以自由度通俗的理解就是所有关节可以旋转和平移的数目的总和)
一个机械臂的自由度怎么计算
自由度有什么作用
机械臂自由度越高,其机构所执行的动作也就越复杂。
各维度的空间自由度怎么计算
一个刚体整体的自由度的计算公式:
m:刚体的自由度;
N:所有的连杆数目(基座也属于连杆),N-1代表减去基座;
fi:代表第i各连杆存在于这个刚体整体中的自由度;
Ci:代表第i各连杆存在于这个刚体整体中收到约束的自由度;
m=fi+Ci;
分析几个刚体的约束度和自由度
分析下面机器人的自由度
1,
刚体只在二维空间:m=3;
N=4;
j=3;
每一个关节只能绕着一个轴转动,所以,所有fi=1;
所以:
dof=3*(4-1-3)+3=3;
所以这个机器人的整体自由度为3。
2,
刚体只在二维空间运动m=3;
n=4;
刚体的所有关节都计算在内j=4;
fi=1;
dof=3*(4-1-4)+4=1
3,人的手臂的自由度
人的手臂的每一个连杆同以下刚体:
可以在三维空间绕着三个轴旋转,但是不能平移,所以c=3,f=3
m=6;
n=3;
j=2;
f1=3,f2=3
dof=6*(3-1-2)+6=6
刚体在二维
二维的空间自由度为m=3。
一个刚体在二维空间内的平移自由度有两个,因为它可以朝着水平和垂直方向的任何一个方向移动。 这两个平移自由度可以表示为刚体在x轴和y轴上的坐标变化。
一个刚体在二维空间内的旋转自由度有一个,因为它可以围绕垂直于平面的轴(或者说z轴)旋转。 旋转自由度可以表示为刚体的朝向或旋转角度。
刚体在三维
三维的空间自由度为m=6。
刚体在四维
四维的空间自由度为m=10。
位姿
位姿=位置+姿态
点的位置可用一个矢量(就是下面的列向量)来表示,物体的姿态可用一个矩阵(旋转矩阵)来表示。
在设计工业机器人时一般会采用六个自由度,分别为沿x轴、y轴、z轴平移;绕x轴、y轴、z轴旋转,前面三个自由度是用于确定位置,后面三个自由度则是用于确定姿态。
位置
刚体的位姿即为刚体坐标系在基坐标系(世界坐标系)下的原点位置(位置),用一个向量来表示。
(就是用一个坐标系内的所有坐标轴表示一个点的坐标就是刚体内一个点的位置)
姿态
刚体运动坐标系的每一个坐标轴映射到世界坐标系对应坐标轴上所形成的向量(每一个向量由三个坐标值表示),所以刚体运动坐标系的原点的姿态就需要三个向量,即3*3的矩阵表示。
姿态就是两个坐标系之间的旋转矩阵。
(就是机械臂末端执行器(就是机械臂的夹子)最终夹取物体的角度,是从上往下,还是从左往右,还是偏移。由 α ,β ,γ三个角度决定。)
旋转矩阵描述姿态
目标坐标系B坐标系相对于基坐标系A的位姿描述:
R(上下标没加)是旋转矩阵,P(上下标没加)是目标坐标系的原点相对于基坐标系的位置矢量坐标。
位置+姿态=位姿
旋转矩阵+位置矢量=齐次变换矩阵
旋转矩阵有时候会被缩写为{n,o,a},n,o,a是向量,表示原来三个点的坐标。
姿态的25种描述方法
1,旋转矩阵
2,欧拉角:
欧拉角的公式为何要将三个独立的旋转角相乘得到刚体的最终旋转矩阵?
因为从几何意义上就是先作相对于某一个轴的旋转,再作相对于某一个轴的旋转。
比如:R(α,β,γ),就表示先作绕Z轴的旋转,再做绕Y轴的旋转,再做绕X轴的旋转。(注意轴和角的对应关系)
最终的旋转是每一个旋转相乘的最终组合。
欧拉角的绕旋转对象
欧拉角是绕着自身(目标坐标系)的轴旋转的,比如先绕Z轴旋转,旋转之后再绕Y轴旋转,之后再绕X轴旋转。
欧拉角有12种对姿态的描述方法---链接
3,固定角:
固定角是目标坐标系绕基坐标系的三个轴旋转进行的描述。
几何意义和欧拉角相同。
固定角也有12种对姿态的描述方法--链接
回转角,俯仰角,有些文献又叫横摇角和纵摇角。
D-H变换矩阵:
四元数:
四元素的本质
如果你的English还可以,请看四元素讲解。
用于描述4维空间内的一个点的坐标,一个实部,三个虚部,虚部代表三个相互正交(垂直)的轴,也就是4维空间内的子空间三维空间的坐标轴。
q=w+xi+yj+zk;
i=j=k=-1;
也可以表示为:
q=((x,y,z,),w)=(v,w)
v是一个向量。
四元素是如何描述姿态的
等效轴角坐标系:
坐标系到坐标系的映射
映射:就是已知两个坐标系位姿和点在一个坐标系的位姿,描述这个点在另一个坐标系下的位姿。
《机器人学导论》-----2.3映射:从坐标系到坐标系的变换。
1,原点位置不同,姿态相同的坐标系描述同一个点
这种情况相当于旋转矩阵为单位矩阵。
2,原点位置相同,姿态不同的坐标系描述同一个点
这种情况不同坐标系的原点是重合的,所以
中第二项为空。
3,原点位置不同,姿态不同的坐标系之间的映射
齐次变换矩阵
旋转矩阵变为4*4的矩阵,然后将位置矢量P(上式的第二项)加入这个4*4的矩阵中就形成了齐次变换矩阵。
利用齐次变换矩阵计算下面的案列
4列乘以3列,相等的相乘,加上后面多余的。
和原本的表达式含义一样:
连杆
在理想状态下,忽略掉实际情况中的结构形变,我们可以将操作臂视为一系列刚体通过关节连接形成的一个运动链,我们将这些刚体称为连杆。
(关节)轴
关节轴就是关节所在的轴。
两个轴之间公垂线的长度就是两个关节轴之间连杆的长度。
机动度
机器人能在工作空间内运动的自由程度。
柔性
即,机器人可编程。
操作点
操作者在机械臂上选择的一个点,通过这个点来秒速机械臂的运动。
运动学正解
所谓正运动学( direct kinematics),是指给出关节的位置、速度、加速度,求各个杆件的位置、姿态、速度、加速度、角速度﹑角加速度的问题。特别是求终端杆件(即末端执行器)的位置、姿态、速度、角速度的问题,这在应用上很重要。正运动学简称为DK。已知正运动学的解析法有齐次变换法和向量法。
目标坐标就是末端执行器要抓取的坐标点。
目标姿态就是末端执行器抓取时的角度。
运动学逆解
所谓逆运动学(inverse kinematics),是指给出杆件的位置、姿态、速度、角速度、加速度和角加速度,求解能实现这些要求的关节变量的位置、速度、加速度。逆运动学简称为IK。实际上,在机器人手臂的控制中,对终端杆件,即对末端执行器的位置、姿态、速度﹑角速度﹑加速度和角加速度的控制是主要问题,所以在逆运动学问题中,主要是由末端执行器的位置、姿态,速度﹑角速度、加速度和角加速度求出关节变量的位置、速度、加速度。
运用
末端(执行器)
指末端执行器
法兰
机器人中的法兰指的是一种连接器件,通常由金属材料制成,用于连接机器人的不同部件或附件。法兰在机器人的结构设计和组装中占据着重要的位置,可以在机器人的不同部件之间提供可靠的连接和密封,同时还能承受一定的机械强度和振动。常见的机器人法兰类型有圆形法兰、方形法兰等,不同类型的法兰适用于不同的应用场合。
动力学正逆解
什么是动力学
动力学运用方程式的求导方法
关于动力学模型(运动方程式)的求导方法,代表性的有拉格朗日法及牛顿-欧拉法。
拉格朗日法
牛顿-欧拉法
速度
线速度
角速度
加速度
力矩
指关节(电机)的驱动力,驱动连杆运动的力。
雅可比矩阵
偏导数的几何意义
y=f(x)的导数称为导数;这是二维空间中的线。
当自变量有两个或者两个以上时,只能对其中一个变量求导,这个过程需要将其他自变量固定,也就是看作常数(因为常数的导数为0),这种对三维以及以上函数求导的导数就是偏导数。
z=f(x,y)表示的是三维空间中,z变量的值随着x,y的值变化而变化,最终形成的是一个曲面。
雅可比矩阵是一个偏导数矩阵,是谁的偏导数?
雅可比矩阵就是对所有函数的所有自变量求偏导数,这些偏导数所组成的矩阵。
所有函数从何而来?
我们一般会需要在机械臂的关节和末端执行器的某些物理量(比如:速度,角速度,线速度)之间建立函数关系,所以就形成了雅可比矩阵。
可以定义任何维数的雅可比矩阵(包括非方阵形式)。雅可比矩阵的行数(m)等于操作臂在笛卡儿空间的自由度数量,雅可比矩阵的列数(n)等于操作臂的关节数量(关节也就是自由度数,所以,一般n=m)。例如,对于平面操作臂,虽然雅可比矩阵不可能超过3行,但对于冗余度平面操作臂,可以有任意多个列(列数和关节数相等)。
有的文献说:通常,n=m,但也有n>m的情况。n>m的手臂称为冗余自由度手臂(redundant arm)。
路径规划
机器人路径规划是规划的位置点
轨迹规划
轨迹规划是位置点+速度点+加速度点
点位
点位指的就是机器人在运动路径中的一个特定的点的位姿信息。在运动过程中机器人需要依靠连续的点位来确定具体的运动轨迹,从而实现完成任务的运动控制。
点位(Point)是机器人程序中的基本单位。点位定义了机器人在空间中的一个位置和末端执行器的姿态信息(如角度、方向和速度等),能够指导机器人执行具体的动作,实现对工件的加工、装配、搬运等操作。
一个点位通常包含位置和姿态两个要素。在工业机器人中,它们通常都是用笛卡尔坐标系或关节坐标系表示的,这可以用多维数组或特定的数据结构来描述。例如,在笛卡尔坐标系下,一个点位的位置可以使用三个浮点数 (x, y, z) 来表示,姿态可以使用欧拉角、四元数或旋转矩阵等方式来表示。而在关节坐标系下,一个点位的姿态可以用多个关节角度来描述,具体数目根据机器人的关节数量而定。