向量与向量空间(vector space)

在维基百科关于 向量空间 的介绍中,并未提及构成向量空间的「向量」的具体形态,即它未必是我们通常理解的3维或者 n 维的实数空间,只是提及对加法和数乘封闭。

0. 向量的使用

  • 向量:大小和方向;
    方向的意义在于,比如日常用到的邮政编码,相对顺序是很要紧的;
  • 存储数据
    在一些问题的求解中,引进一个辅助向量 D,它的每一个分量 Di 可以富裕特定的物理意义,比如在图论当中求解最短路径问题时,从开始点 v 到其他每个终点 vi 的最短路径的长度。

    1. 向量空间

    这里引入一个新的向量空间,比如:all 3×3 matrices. 也即矩阵也是一种向量(将 Rn 的概念延伸至 Rn×n ),只不过需要要求矩阵满足加法和数乘(乘法和向量空间没有关系),显然满足,即两个 3×3 的矩阵相加仍然是 3×3 的矩阵,一个 3×3 的矩阵和一个数(scalar)相乘也仍旧是 3×3 的矩阵。此时,我们单独考察 3×3 的向量空间或称作矩阵空间对数乘封闭这一性质,进而可以得到一种升级版的线性组合(linear combination),此时因为轴(axis)的关系,对应的编程实现便不再是np.dot,而应是np.tensordot,关于numpy下的多维数组的轴的讨论,请参阅numpy中多维数组的轴(axis)

    >>> np.random.seed(123)
    >>> X = np.random.randint(0, 6, [3, 2, 2])
    >>> X
    array([[[5, 2],
            [4, 2]],
    
           [[1, 3],
            [2, 3]],
    
           [[1, 1],
            [0, 1]]])
    
    >>> np.tensordot(X, [1, 1, 1], axes=([0], [0]))
    array([[7, 6],
           [6, 6]])
                            # 我们可将[1, 1, 1]替换为任一长度为3的数组
                            # 数学含义即为矩阵空间的线性组合
    # 等价于
    >>> np.sum(X, axis=0)
    array([[7, 6],
           [6, 6]])
    

    2. 矩阵空间其相关的子空间的维数

    这里顺便澄清一下维数的定义,

    定义:线性空间 V 中线性无关向量所含向量的最大个数称为 V 的维数(dimension)。

    我们考察如下的矩阵空间( 3×3 M )的一个子空间(subspace),如所有 3×3 的对角矩阵(diagonal matrices,仍然保持对加法和数乘的封闭),它的维数是多少?

    并非3*3==9,而是3,极大线性无关组所含向量的个数嘛,比如如下的一组线性无关组:

    1,0,0,0,0,0,000,1,0,0,0,3,0,000,0,0,0,0,0,0,007.

    再比如对称矩阵的维数为6,上三角矩阵的维数也为6。

    3. 对不同的子空间取并( SU ) 还是取和( S+U

    为什么我们对两个子空间的并集(union)不感兴趣,比如对称矩阵构成的子空间( S )与上三角矩阵构成的子空间(U),而它们的交集构成对角矩阵( SU=D )。是因为此时 SU 构成的子空间不再是线性空间

    此时将 SU 约束为 S+U (direct sum,any element of S +(向量加法) any element of U=all 3*3 matrices)

    这里又引申出另外一条重要的公式,维数公式:
    定理(维数公式):如果 V1,V2 是数域 K 上的线性空间 V的两个子空间,那么有如下的公式:

    dimV1+dimV2=dim(V1+V2)+dim(V1V2)

    也即 dim(V1+V2)=dimV1+dimV2dim(V1V2)

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
向量空间Vector Space)是数学中一个基本的概念,是一种能够进行线性组合和加法、数乘运算的集合。它是线性代数中的一个重要分支,广泛应用于物理学、工程学、计算机科学等领域。 在向量空间中,向量是指具有大小和方向的量,通常用箭头表示。向量可以是实数向量,也可以是复数向量向量空间中的元素称为向量向量空间中的运算包括向量加法和数乘运算。 向量加法满足交换律、结合律和存在零向量的性质,即对于任意的向量a、b、c,有a+b=b+a、(a+b)+c=a+(b+c)、存在零向量0,使得a+0=a。 数乘运算满足结合律和分配律,即对于任意的标量k、l和向量a,有k(la)=(kl)a、(k+l)a=ka+la、k(a+b)=ka+kb。 一个向量空间必须满足以下条件: 1. 零向量存在且唯一。 2. 向量加法和数乘运算封闭。 3. 向量加法满足交换律、结合律、存在零向量的性质。 4. 数乘运算满足结合律和分配律。 5. 对于任意向量a,存在一个负向量-b,使得a+b=0。 向量空间的维数是指向量空间的一组基所包含的向量的个数,也可以理解为向量空间的最大线性无关组的元素个数。在向量空间中,向量可以用一组有序的数表示,这组数就是向量在该向量空间中的坐标。 向量空间是线性代数中的基础概念,它具有很多重要的性质和应用。例如,矩阵可以看作是向量空间中的向量,线性变换可以看作是向量空间中的运算,最小二乘法中的解也是向量空间中的向量等等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值