Transformer、扩散模型与深度学习优化的深度解析

Transformer、扩散模型与深度学习优化的幽默解析

引言

深度学习技术这几年发展得比特斯拉加速还快,一不留神就冒出一大堆新名词、新模型。曾几何时,我们还在为简单的CNN和RNN鼓掌,如今Transformer横扫千军,扩散模型在生成领域大放异彩,各种优化方法层出不穷。作为AI研究者、开发者或者业界从业者的你,可能每天都在上演“今天又卷了吗”的戏码:刚掌握了BERT,GPT又来了;刚理解GAN,Diffusion又火了;好不容易调通了Adam优化器,Twitter上又在吹Lion优化器🐱‍👤。

别怕,这篇博客将带你 深入浅出 地分析这些炙手可热的主题——Transformer的进展、Diffusion(扩散)模型、神经网络架构和优化方法——同时用一点幽默调侃复杂公式,争取让阅读体验像刷B站一样轻松(虽然没有鬼畜视频,但有脑洞故事)。准备好了就开始吧!让我们一边吐槽一边学习那些让AI模型威力无穷的秘诀。

Transformer 进展

Transformer 基础:注意力机制拯救世界

故事要从2017年的神作《Attention is All You Need》讲起。这篇论文的标题直译就是“注意力就是你所需要的一切”,听上去有点像心灵鸡汤,但它确实改变了深度学习的江湖格局。Transformer结构抛弃了传统序列模型中的循环神经网络(RNN),一股脑儿全盘引入自注意力机制(Self-Attention)。这就好比神经网络界来了个“霸道总裁”,一句话:“别管LSTM了,一切都用注意力算!”。

自注意力机制的核心思想并不复杂:让每个输入元素都**关注(attend)**其他元素。具体实现上,就是用 Query、Key、Value 三组向量互相算相关性(内积),求出注意力分数,然后用加权和得到输出。这听起来学术,但想象一下课堂上开小差:Query是你现在脑子里的疑问,Keys是课本上各段内容的要点,Values是这些要点的实际信息内容。注意力机制就是根据你脑中疑问和课本各段的相关程度(内积)来决定你该多关注哪段(softmax权重),最后汇总成你脑中的答案(输出向量)。从此,网络可以灵活地建模序列中远距离的依赖关系,而且并行计算起来还贼快,不用像RNN那样一步步“忆苦思甜”了。

Transformer结构本身由编码器-解码器堆叠而成,每一层都靠多头注意力(Multi-Head Attention)和前馈网络(feed-forward)组成。多个注意力头就像多线程八卦群众,分别关注不同的信息侧面,最后汇总出更丰富的表达。编码器负责读懂输入语句,解码器负责生成输出语句。训练时还有个技巧叫**掩码(Mask)**来确保解码器不能偷看未来的词(要不机器翻译早就成预言家了)。总之,Transformer凭借“注意力+并行”的独特魅力,在翻译等NLP任务上一出道即巅峰。

GPT、BERT 与 ViT:Transformer 的明星应用

Transformer火了之后,各路豪杰开始用它改造各种任务,造就了一批AI界“顶流”模型:

  • GPT系列:OpenAI的GPT(Generative Pre-trained Transformer)家族是Transformer的直系亲传弟子。GPT干脆砍掉了编码器,留一手解码器一路堆到底,专注做语言模型。它们通过海量文本预训练,学会了“续写小说”的能力。GPT-2曾以生成流畅文章轰动一时,GPT-3更是以1750亿参数震惊业界,让AI写作达到以假乱真的地步(某种程度上,它也是我们这篇文章作者之一的远房表亲🤖)。最近的GPT-4据说连代码都会写,已经开始威胁程序员的生计了(开个玩笑,至少目前还是需要人类提示词的)。

  • BERT:由谷歌提出的BERT (Bidirectional Encoder Representations from Transformers) 则采用了纯编码器架构,是NLP任务的万能工兵。BERT通过“填空考试”式的预训练(掩盖一句话中的一些词然后让模型猜),学到了深层双向语言理解能力。它可以用在分类、问答、命名实体识别等各种下游任务上。一时间,“一切皆可BERT”成为NLP信条。可以说,NLP界自从有了BERT,卷论文都得先跑个BERT baseline才有底气。

  • Vision Transformer (ViT):Transformer不满足于在NLP称王,又跑去CV(计算机视觉)踢馆。ViT把图片切成16x16的小块(patch),把每个块当成一个“词”来喂给Transformer编码器,再配上位置编码告诉模型这些块原本的方位。结果ViT在图像分类上取得了与卷积神经网络(CNN)比肩甚至更优的成绩。想想看,不用卷积也能玩图像,这让不少CNN老前辈们直呼“后生可畏”——毕竟Transformer连图像领域的饭碗也想端走。不过Transformer处理图像也有自己的挑战,比如需要更多数据和计算,但ViT证明了Transformer的通用可迁移性,也引发了一系列视觉Transformer的后续研究。

可以看到,Transformer架构已经成功统治了自然语言处理,并向计算机视觉领域迅速扩张。无论是让模型读文章还是看图片,仿佛只要祭出“注意力”的法宝,就没有Transformer搞不定的任务。当然,随着应用深入,新问题也出现了,比如序列长度一长,计算和内存需求就爆炸等等。这就引出了最新的Transformer改进研究,我们接着八卦。

最新探索:FlashAttention、MoE、Sparse Transformer

Transformer大火后,研究人员一边在应用上乘风破浪,另一边在基础结构和效率上绞尽脑汁,推出了许多改进版本和插件,让Transformer更快、更省、更强。下面我们来围观其中几位“改进高手”:

  • FlashAttention:不要误会,这不是DC英雄闪电侠客串Transformer,而是一种高效注意力算法。标准Transformer的自注意力计算开销随着序列长度平方级增长,内存也吃不消。FlashAttention的贡献在于通过优化显存访问和计算模式,大幅降低了注意力计算的内存开销和延迟。简单来说,它把对大型注意力矩阵的计算拆分成小块(tiling)分步完成,并巧妙利用显存层级和重计算技术,做到**既减少高带宽内存读写又不影响结果精 (Transformer中的FlashAttention_怎么使用flashattention-CSDN博客) (Transformer中的FlashAttention_怎么使用flashattention-CSDN博客)45】。据报道,FlashAttention可以在不牺牲准确率的前提下,让Transformer处理长序列时训练速度提升约 (Transformer中的FlashAttention_怎么使用flashattention-CSDN博客)L4】。有了它,大模型上下文长度从2048拓展到更高也不再那么令人绝望了。总之,FlashAttention就像给Transformer装上了SSD硬盘,减少来回搬运数据的时间,让注意力计算飞驰起来。

  • Mixture-of-Experts (MoE):直译叫“混合专家模型”,听着像AI版的多核大脑。MoE的思路是与其让一个模型学天下,不如训练多个“专家”各有所长。具体来说,MoE在Transformer层引入了许多并行的子网络(专家),再用一个门控网络来为每个输入路由合适的专家。这意味着每次只激活一小部分模型参数,大大节 (天工一刻| 一文看懂MoE混合专家大模型 - 36氪)11】。Google的Switch Transformer和GShard都应用了MoE思想,把模型参数规模飙到上万亿但实际计算只用其中一部分,做到“看起来很大,计算起来不大”。MoE模型就像武林门派大会,不同高手各练一门绝技,来了问题先由“门派掌门”分配给对应专家处理。不过MoE也有难点,例如专家不平衡利用、通信开销等,就好比有的专家老加班有的在摸鱼,因此如何有效调度也是门学问。

  • Sparse Transformer:这是让注意力变稀疏的思路。标准注意力是“管杀不管埋”,每个元素对所有其他元素计算相关性,复杂度高。Sparse Transformer类的方法尝试只让每个元素关注其中一部分,从稠密全连接变成稀疏连接。比如OpenAI早期提出的Sparse Transformer使用固定稀疏模式,Strided和Local相结合,让序列只关注局部块或跳跃若干步远的项;还有Longformer、BigBird等模型采用稀疏注意力机制,使得处理长文档成为可能。稀疏注意力就像社交网络里的“好友列表”,没必要人人互相关注,只需关注少数几个要好的,就能降低社交(计算)负担。但稀疏也会带来信息屏蔽的风险(万一最相关的信息被划掉了呢?),所以设计需要平衡高效和效果。总的来说,Sparse Transformer系列让注意力计算从原来的密密麻麻松散了一些,在长序列任务中如阅读长文档、基因序列分析等领域显现出优势。

除此之外,还有高效Transformer的各种其他路子,比如对Attention进行低秩近似(Linformer)、使用旋转位置嵌入(RoPE)扩展长度、甚至干脆用FFT变换替代部分注意力(F-net)等等,简直是八仙过海各显神通。我们在这就不一一展开了。可以预见,Transformer今后的发展一大主题就是**“如何又快又省地搞定注意力”**,让模型既能有“十八般武艺”,又不会每次一出手就让GPU钱包大出血。

示例:用 PyTorch 构建一个 Transformer

说了这么多理论,是时候上点干货代码了!下面我们用PyTorch构建一个简单的Transformer模型结构,体验一下用代码“召唤”Transformer的感觉。这里我们直接使用PyTorch内置的 nn.Transformer 模块,它包含了编码器-解码器架构。我们假设想实现一个简单的序列到序列转换(比如翻译)的模型:

import torch
import torch.nn as nn

# 定义Transformer模型参数
d_model = 128   # 每个词的embedding维度
nhead = 8       # 多头注意力的头数
num_layers = 4  # 编码器和解码器层数

# 构建Transformer模型(编码器和解码器各4层)
model = nn.Transformer(d_model=d_model, nhead=nhead, 
                       num_encoder_layers=num_layers, 
                       num_decoder_layers=num_layers)

# 模拟一些数据:长度为10的源序列,长度为5的目标序列,批量大小为32
src = torch.rand(10, 32, d_model)  # [sequence_len, batch, d_model]
tgt = torch.rand(5, 32, d_model)

# 前向传播
out = model(src, tgt)
print(out.shape)  # 输出张量维度,应为 [tgt_len, batch, d_model],即 (5, 32, 128)

运行上述代码,你将得到一个形状为 (5, 32, 128) 的输出张量,对应目标序列每个位置的编码表示。这个模型此时是随机初始化的,效果和胡乱翻译差不多 😅。但只需准备好训练数据,定义好损失函数,然后像训练其他网络一样训练它,这个Transformer就能学会从源序列映射到目标序列,比如从英文翻译成中文。

当然,上面的 nn.Transformer 封装了一切。如果我们想更细粒度地自定义Transformer,也可以用 nn.TransformerEncoderLayernn.TransformerEncoder 等模块自行搭建,甚至直接使用 nn.MultiheadAttention 构造自注意力。这方面的自由度很高,可以根据需求魔改。Transformer库函数已经帮我们处理好了张量的维度、掩码等细节,用起来还是相当方便的。

通过这个简单的示例,我们亲手体验了Transformer模型的构建。是不是感觉其实也没有想象中那么神秘?当年那篇论文的PyTorch官方实现也就几百行代码。当然,自己实现要注意的细节也很多,比如多头注意力的维度计算、残差连接和LayerNorm的位置等等。但好在有现成的模块供我们调用,减少了出bug的机会。总之,Transformer让深度学习模型进入了一个“注意力至上”的时代,接下来登场的扩散模型,则把生成模型带进了“先破后立”的新境界。

扩散模型(Diffusion Models)

什么是扩散模型?

如果说Transformer是靠注意力机制在建造高楼大厦,那扩散模型就是先拆楼盖楼,过程相当带感。扩散模型是一类生成模型的新秀,严格名字叫去噪扩散概率模型(Denoising Diffusion Probabilistic Model,缩写DDPM)。它的基本思想源自物理学的扩散过程:想象我们有一张清晰的图片,不断往上添加随机噪声,最后会变成纯噪声点阵;而扩散模型要学的,就是如何逆转这个过程——从纯噪声开始,逐步去除噪声还原出一张 (扩散模型(Diffusion Model)详解:直观理解、数学原理、PyTorch 实现 | 周弈帆的博客)L64】。

打个比方,这就像拿一张照片反复马赛克,最后完全糊掉;扩散模型则训练一个“艺术修复师”AI,让它学会如何一点点擦除马赛克,重建出原来的清晰图像。这个过程有点像电影倒放:正放是“毁灭”,倒放就是“创作”。因此,扩散模型本质上是一种生成模型,跟GAN(生成对抗网络)和VAE(变分自编码器)一样,都是无监督地学习数据的分布来产出新样本。

扩散模型和GAN、VAE相比有什么不同呢?简单总结:

  • GAN是以假乱真对抗赛:两个网络一个造假币(生成器),一个验钞(判别器),互相博弈中进步。GAN常能生成惊人的逼真图像,但训练像驯服两只互相掐架的野兽,容易不稳定(崩盘、模式崩溃等)。
  • VAE是统计建模:它学习数据的隐空间分布,生成时从高斯分布采样再解码出图像。VAE稳定但是往往生成样本模糊,细节不够锐利(常被吐槽“开了美颜磨皮”效果)。
  • 扩散模型则是拆了再建:它不需要判别器,也没有显式的编码器,而是定义了一个正向“加噪”过程和一个反向“去 (扩散模型(Diffusion Model)详解:直观理解、数学原理、PyTorch 实现 | 周弈帆的博客)L69】。正向过程逐渐把数据分布变成高斯分布(噪声),反向过程学一个神经网络逐步将噪声转换回数据。因为每一步变化都很微小,扩散模型生成的图像质量非常高、细节丰富,而且训练相对稳定(没有两个网络互相斗争)。

一句话,扩散模型的精髓在于分步生成:通过很多小步骤的迭代逐渐逼近目标分布。正如鲁迅先生名言改编:“这个世界上本没有路,噪声加多了,便生成了路;噪声去掉了,路就清晰了”。是不是有点哲学意味?🤪 好的,不鸡汤了,我们还是从更具体的角度看看扩散模型是怎么工作的。

从 DDPM 到 Stable Diffusion:扩散模型的演进

虽然“扩散模型”最近爆火,但它的想法其实在几十年前就有雏形,例如1980年代的扩散过程理论。不过直到2019-2020年,才有了里程碑式的工作把它发扬光大。DDPM就是由Ho等人在2020年提出 (Denoising Diffusion Probabilistic Models(DDPM)保姆级解析)-L10】。他们证明了多步去噪生成的可行性,并用简单的均方误差损失训练出了高质量的图像生成模型。这篇论文之后,扩散模型开启了开挂模式,各种改进和新变体纷纷出炉,比如改进采样速度的DDIM,加入潜变量的Latent Diffusion,以及重量级的业界应用模型。

Stable Diffusion 可以说是把扩散模型推向大众的明星选手。它由稳定AI公司(Stability AI)基于Latent Diffusion开发,并在2022年开放发布。Stable Diffusion厉害之处在于:

  • 它工作在**潜空间(latent space)**上,而不是直接在像素空间进行扩散。这利用了VAE先把图像压缩到较小的表示上,然后在这个压缩空间扩散和生成,再解码回图像。这样大大降低了计算量。
  • 它引入了文本条件:通过一个文本编码器(比如Clip模型)把用户输入的文本提示嵌入,然后引导扩散过程朝着描述的方向生成图像。于是你可以输入“宇宙中的猫头鹰水彩画”,Stable Diffusion就能梦幻般地给你画一只遨游太空的猫头鹰。

Stable Diffusion之所以“稳定”,一方面指它生成效果稳定高质,另一方面是因为它真的很稳健:可以在消费级显卡上运行(只需几GB显存就能生成512x512图像),代码模型也开源,方便大家魔改。它一经推出就点燃了大众的创造力,各种二创、微调模型如雨后春笋(什么真人照片风、二次元动漫风都有人训)。可以说,Stable Diffusion让AI绘画飞入了寻常百姓家,标志着扩散模型从论文走向了实用。

除了图像,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱吃青菜的大力水手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值