✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
故障诊断预测在工业生产中至关重要,可有效避免设备故障带来的损失。随机配置网络(SCN)是一种新型的深度学习模型,具有鲁棒性和可解释性强的特点。本文提出了一种基于SCN-Adaboost的故障诊断预测方法,该方法结合了SCN的非线性映射能力和Adaboost算法的集成学习优势,提高了故障诊断的准确性和鲁棒性。
故障诊断预测概述
故障诊断预测是指通过分析设备运行数据,预测未来可能发生的故障。传统的故障诊断方法主要基于专家经验和统计模型,存在准确性低、鲁棒性差等问题。随着深度学习的发展,基于深度学习的故障诊断方法逐渐成为研究热点。
SCN-Adaboost故障诊断预测方法
本文提出的SCN-Adaboost故障诊断预测方法主要包括以下步骤:
-
**数据预处理:**对原始设备运行数据进行预处理,包括数据清洗、归一化等。
-
**SCN模型训练:**使用随机配置网络(SCN)对预处理后的数据进行训练,得到SCN模型。SCN具有强大的非线性映射能力,可以从原始数据中提取故障特征。
-
**Adaboost集成:**使用Adaboost算法对多个SCN模型进行集成,得到最终的预测模型。Adaboost算法通过调整每个SCN模型的权重,提高了集成模型的泛化能力和鲁棒性。
-
**故障诊断预测:**将新的设备运行数据输入到训练好的SCN-Adaboost模型中,得到故障诊断预测结果。
实验结果
本文使用UCI公开数据集进行实验,数据集包含来自不同设备的故障数据。实验结果表明,提出的SCN-Adaboost方法在故障诊断预测任务上取得了优异的性能。与传统的故障诊断方法相比,SCN-Adaboost方法的准确率和鲁棒性均有显著提高。
结论
本文提出了一种基于SCN-Adaboost的故障诊断预测方法,该方法结合了SCN的非线性映射能力和Adaboost算法的集成学习优势,提高了故障诊断的准确性和鲁棒性。实验结果表明,提出的方法具有良好的应用前景,可为工业生产中的故障诊断预测提供有效支持。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
[1] 赵立杰,王月,郭烁.基于AdaBoost.RT的污水水质随机配置网络集成模型[J].沈阳大学学报, 2022(003):034.
[2] 韩韬.基于改进PSO的BP_Adaboost算法的优化与改进[D].桂林理工大学,2014.DOI:10.7666/d.D553315.
[3] 尚秋峰,黄达,巩彪.基于VMD与AdaBoost-SCN的海缆振动信号识别方法[J].振动与冲击, 2023, 42(19):231-239.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类