【RBF分类】基于灰狼算法优化径向基神经网络GWO-RBF实现故障诊断附matlab代码 注释清楚,干货满满,直接运行

本文介绍了一种利用灰狼优化算法(GWO)改进径向基神经网络(RBF)参数的方法,以提高故障诊断的准确性。通过模拟灰狼的社会行为,GWO有效地搜索最优参数,实验结果表明GWO-RBF方法在电机故障诊断中表现优于传统方法。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

径向基神经网络(RBF)是一种广泛应用于故障诊断的非线性分类器。然而,传统RBF的中心和宽度参数通常是通过经验或启发式方法确定的,这可能会导致次优分类性能。本文提出了一种基于灰狼算法(GWO)优化RBF参数的故障诊断方法。GWO是一种元启发式算法,它模拟灰狼的社会等级结构和狩猎行为。通过将GWO应用于RBF参数优化,可以有效地搜索最优参数,从而提高故障诊断的准确性。

1. 径向基神经网络(RBF)

RBF是一种前馈神经网络,具有一个输入层、一个隐含层和一个输出层。隐含层的神经元采用径向基函数作为激活函数,其形式为:

2. 灰狼算法(GWO)

GWO是一种元启发式算法,它模拟灰狼的社会等级结构和狩猎行为。灰狼群体的社会等级结构分为四级:头狼、副头狼、从属狼和哨兵狼。头狼负责领导群体,副头狼辅助头狼,从属狼跟随头狼和副头狼,哨兵狼负责警戒和侦察。

GWO算法的狩猎行为分为三个阶段:

  • **搜索猎物:**灰狼群体会随机搜索猎物。

  • **包围猎物:**当灰狼群发现猎物后,它们会包围猎物并逐渐缩小包围圈。

  • **攻击猎物:**当包围圈缩小到一定程度后,灰狼群会发起攻击并捕获猎物。

3. GWO-RBF故障诊断方法

本文提出的GWO-RBF故障诊断方法包括以下步骤:

  1. **初始化GWO参数:**设置GWO算法的参数,包括种群规模、最大迭代次数和灰狼群体的社会等级结构。

  2. **初始化RBF参数:**随机初始化RBF网络的中心、宽度和权重参数。

  3. **适应度函数:**定义适应度函数来评估RBF网络的分类性能。

  4. **GWO优化:**使用GWO算法优化RBF网络的参数,以最小化适应度函数。

  5. **故障诊断:**利用优化后的RBF网络对故障数据进行分类,并输出故障诊断结果。

4. 实验结果

本文将GWO-RBF故障诊断方法应用于某电机的故障诊断任务。实验结果表明,与传统RBF和基于粒子群优化(PSO)的RBF方法相比,GWO-RBF方法具有更高的故障诊断准确性。

5. 结论

本文提出了一种基于GWO算法优化RBF参数的故障诊断方法。通过将GWO应用于RBF参数优化,可以有效地搜索最优参数,从而提高故障诊断的准确性。实验结果表明,GWO-RBF方法具有良好的故障诊断性能,可以有效地用于复杂系统的故障诊断。

📣 部分代码

%%  读取数据res=importdata('FFT_MFCC.mat');% 添加标签Num=ones([178,1]);                      %每种类型样本为178个res(:,size(res,2)+1)=[Num;Num*2;Num*3];   %对第19列依次添加1,2,3标签各178个%%  分析数据num_class = length(unique(res(:, end)));  % 类别数num_res = size(res, 1);                   % 样本数(每一行,是一个样本)num_size = 0.75;                          % 训练集占数据集的比例res = res(randperm(num_res), :);          % 打乱数据集flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)%%  设置变量存储数据P_train = []; P_test = [];T_train = []; T_test = [];%%  划分数据集for i = 1 : num_class    mid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本    mid_size = size(mid_res, 1);                    % 得到不同类别样本个数    mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数    P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入    T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出    P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入    T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出end%%  数据转置P_train = P_train'; P_test = P_test';T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数M = size(P_train, 2);N = size(P_test , 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input,0,1);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );%%  GWO蜣螂优化算法参数设置

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 25
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
好的,以下是于鲸鱼算法(WOA)优化径向神经网络(WOA-RBF)的分类预测的 MATLAB 代码: ``` % 读取数据集 load iris_dataset.mat; % 数据预处理 inputs = irisInputs'; targets = irisTargets'; % 参数设置 N = size(inputs, 1); % 样本数 D = size(inputs, 2); % 特征数 K = size(targets, 2); % 类别数 M = 10; % 隐含层神经元数量 sigma_max = 1; % 高斯径向函数的最大半径 sigma_min = 0.1; % 高斯径向函数的最小半径 max_iter = 100; % 最大迭代次数 pop_size = 20; % 种群大小 a = 2; % 参数a c_max = 1; % 最大步长因子 c_min = 0; % 最小步长因子 % 初始化径向函数中心 rbf_center = datasample(inputs, M, 'Replace', false); % 初始化径向函数半径 rbf_sigma = linspace(sigma_max, sigma_min, M); % 初始化权值矩阵 W = randn(M, K); % 初始化鲸鱼位置 X = zeros(pop_size, M * D + M + K); % 初始化最优鲸鱼位置 X_best = zeros(1, M * D + M + K); % 初始化最优适应度值 fit_best = Inf; % 初始化步长因子 c = c_max - linspace(0, 1, max_iter) * (c_max - c_min); % WOA算法主体部分 for iter = 1:max_iter for i = 1:pop_size % 计算适应度值 rbf_output = zeros(N, M); for m = 1:M rbf_output(:, m) = exp(-sum((inputs - rbf_center(m, :)).^2, 2) / (2 * rbf_sigma(m)^2)); end output = rbf_output * W; fit = 1 / N * sum(sum((targets - output).^2)); % 更新最优鲸鱼位置和最优适应度值 if fit < fit_best fit_best = fit; X_best = X(i, :); end % 随机选择两个鲸鱼 r1 = randi([1, pop_size]); r2 = randi([1, pop_size]); % 计算向量D D = abs(X(r1, :) - X(r2, :)); % 更新位置 if rand() < 0.5 X(i, :) = X_best - c(iter) * D; else X(i, :) = X_best + c(iter) * D; end % 边界处理 X(i, 1:M * D) = max(min(X(i, 1:M * D), repmat(reshape(inputs', 1, []), pop_size, 1)), repmat(reshape(inputs', 1, []), pop_size, 1)); X(i, M * D + 1:M * D + M) = max(min(X(i, M * D + 1:M * D + M), repmat(reshape(rbf_sigma', 1, []), pop_size, 1)), repmat(reshape(rbf_sigma', 1, []), pop_size, 1)); X(i, M * D + M + 1:end) = max(min(X(i, M * D + M + 1:end), repmat(reshape(W', 1, []), pop_size, 1)), repmat(reshape(W', 1, []), pop_size, 1)); end % 更新径向函数中心和半径 rbf_center = reshape(X_best(1:M * D), M, D); rbf_sigma = X_best(M * D + 1:M * D + M); % 更新权值矩阵 W = reshape(X_best(M * D + M + 1:end), M, K); end % 测试模型 rbf_output = zeros(N, M); for m = 1:M rbf_output(:, m) = exp(-sum((inputs - rbf_center(m, :)).^2, 2) / (2 * rbf_sigma(m)^2)); end output = rbf_output * W; [~, predict] = max(output, [], 2); [~, label] = max(targets, [], 2); accuracy = sum(predict == label) / N; disp(['Accuracy: ', num2str(accuracy)]); % 绘制决策边界 figure; gscatter(inputs(:, 1), inputs(:, 2), label); hold on; x1range = min(inputs(:, 1)):0.01:max(inputs(:, 1)); x2range = min(inputs(:, 2)):0.01:max(inputs(:, 2)); [xx1, xx2] = meshgrid(x1range, x2range); XGrid = [xx1(:) xx2(:)]; rbf_output = zeros(length(XGrid), M); for m = 1:M rbf_output(:, m) = exp(-sum((XGrid - repmat(rbf_center(m, :), length(XGrid), 1)).^2, 2) / (2 * rbf_sigma(m)^2)); end YGrid = rbf_output * W; [~, predictions] = max(YGrid, [], 2); gscatter(XGrid(:, 1), XGrid(:, 2), predictions, 'k', '.', 20); title('WOA-RBF Decision Boundary'); legend('setosa', 'versicolor', 'virginica', 'Location', 'best'); ``` 注意:该代码仅供参考,实际使用时需要根据具体情况进行一定的修改。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值