✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
随着社会经济的发展和能源结构的转型,电力负荷预测对于电网安全稳定运行和资源优化配置至关重要。传统的负荷预测方法大多依赖于统计学方法和机器学习方法,但往往难以捕捉时间序列数据的复杂非线性特征,导致预测精度有限。近年来,Transformer 在自然语言处理领域取得了巨大成功,其强大的特征提取能力和并行计算优势使其在时间序列预测领域也展现出巨大潜力。本文提出了一种基于 Transformer-GRU 的负荷数据回归预测模型,将 Transformer 与 GRU 相结合,充分利用各自优势,有效提升负荷预测精度。
1. 引言
电力负荷是反映电力系统运行状态的重要指标,其预测结果直接影响电网调度、发电计划、电力市场交易等环节。准确的负荷预测对于保障电网安全稳定运行、提高能源利用效率、降低运行成本等方面具有重要意义。
传统的负荷预测方法主要包括统计学方法和机器学习方法。统计学方法主要依赖于历史数据进行统计分析,如 ARIMA 模型等,但其预测能力受限于数据模型的假设条件,难以处理复杂非线性数据。机器学习方法主要利用神经网络等模型进行学习,如支持向量机、随机森林等,但这些方法通常需要大量的训练数据,且对模型参数的敏感度较高。
近年来,Transformer 模型在自然语言处理领域取得了巨大成功,其强大的特征提取能力和并行计算优势使其在时间序列预测领域也展现出巨大潜力。Transformer 通过多头注意力机制,可以有效捕获时间序列数据的长期依赖关系,从而提高预测精度。
然而,Transformer 模型也存在一些不足,如对于短期依赖关系的建模能力较弱,且模型参数量较大,训练过程较为复杂。为了克服这些问题,本文提出了一种基于 Transformer-GRU 的负荷数据回归预测模型,将 Transformer 与 GRU 相结合,充分利用各自优势,有效提升负荷预测精度。
2. 模型架构
本模型采用 Transformer-GRU 结构,其主要组成部分包括:
-
输入层: 接收历史负荷数据,并将其转换为模型可识别的向量形式。
-
Transformer 层: 使用多头注意力机制,提取历史负荷数据中的长期依赖关系,并生成特征向量。
-
GRU 层: 使用门控循环神经网络,捕捉历史负荷数据中的短期依赖关系,并进一步提取特征。
-
输出层: 将提取的特征向量映射到预测负荷值,并输出最终的预测结果。
2.1 Transformer 层
Transformer 层使用多头注意力机制,以并行的方式学习时间序列数据的长期依赖关系。它主要由编码器和解码器组成。
-
编码器: 将输入序列映射到特征向量,并提取时间序列数据的特征。
-
解码器: 利用编码器输出的特征向量预测未来负荷值。
2.2 GRU 层
GRU 层使用门控循环神经网络,学习时间序列数据的短期依赖关系。它可以有效地解决传统循环神经网络中存在的梯度消失问题,并提高模型的训练效率。
2.3 输出层
输出层将 Transformer 层和 GRU 层的输出特征向量进行整合,并通过全连接层映射到预测负荷值。
3. 实验结果
为了验证模型的有效性,本文采用真实电力负荷数据进行实验,并与传统的 ARIMA 模型和 LSTM 模型进行对比。实验结果表明,基于 Transformer-GRU 的模型在负荷预测方面取得了更好的精度。
本文采用均方根误差 (RMSE)、平均绝对误差 (MAE) 和均方误差 (MSE) 等指标评估模型的预测性能。
实验结果表明,基于 Transformer-GRU 的模型在负荷预测方面取得了更好的精度,其 RMSE、MAE 和 MSE 都比传统的 ARIMA 模型和 LSTM 模型低。
4. 结论
本文提出了一种基于 Transformer-GRU 的负荷数据回归预测模型,该模型将 Transformer 的强大特征提取能力与 GRU 的短期依赖学习能力相结合,有效提高了负荷预测精度。实验结果表明,该模型在真实负荷数据上取得了优于传统方法的预测性能。
5. 未来工作
未来工作将进一步优化模型,例如:
-
探索更有效的特征工程方法,提高模型的泛化能力。
-
结合其他深度学习技术,例如注意力机制、卷积神经网络等,进一步提升模型的预测精度。
-
研究模型在不同电力系统中的适用性,并扩展到其他时间序列预测领域。
⛳️ 运行结果
📣 部分代码
%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
🔗 参考文献
[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].
[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类