Qwen2.5-3B-Instruct-GGUF部署

注册账号:

魔搭社区

 

 等一会:

部署好了:

立即使用:

您部署的服务提供OpenAI API接口,可通过OpenAI SDK进行调用。请确保您的服务处于正常运行状态,并预先安装OpenAI SDK:

pip install openai

在本地新建一个py文件:

from openai import OpenAI

model_id = 'Qwen/Qwen2.5-3B-Instruct-GGUF'

client = OpenAI(
    base_url='https://hangzhou.fcapp.run/v1',
    api_key='ollama'
)

response=client.chat.completions.create(
    model=model_id,
    messages=[{"role":"user", "content":"你好,能帮我介绍一下杭州吗?"}],
    stream=True
)

for chunk in response:
    print(chunk.choices[0].delta.content, end='')

运行py文件之后就可以输出message相应的回答啦:

相关文章:

Qwen2.5 全链路模型体验、下载、推理、微调、部署实战!-CSDN博客

<think>好的,我现在需要帮助用户在Ubuntu 22.04系统上部署Qwen2.5-VL-7B-Instruct-GGUF模型。首先,我得回忆一下用户提供的引用内容。引用[2]提到用户之前使用过联想Y7000配置的机器,安装了4060显卡、16G内存和Ubuntu 22.04,微调过Qwen2.5-VL-2B模型。现在用户想部署7B的GGUF版本,可能需要类似的环境配置。 首先,安装GGUF模型通常需要llama.cpp或其衍生工具,因为GGUF是GGML的后续格式,专为CPU推理优化,但也支持GPU加速。用户有4060显卡,应该可以利用CUDA加速。因此,我需要确保系统中安装了NVIDIA驱动、CUDA工具包以及相关的依赖库。 接下来,用户可能需要下载Qwen2.5-VL-7B-InstructGGUF模型文件。根据经验,模型可能在Hugging Face或ModelScope上提供。需要指导用户如何正确下载模型文件,并验证文件的完整性,比如通过哈希校验。 然后,编译llama.cpp或兼容的推理引擎。这可能涉及从源码克隆仓库,安装必要的构建工具如CMake、g++,以及启用CUDA支持。在编译过程中,需要确保CUDA架构参数正确,比如针对RTX 4060的Compute Capability是8.9,但可能llama.cpp的最新版本已经支持,或者需要手动指定。 安装完成后,用户需要配置模型路径和参数,编写一个简单的Python脚本或使用提供的示例代码来加载模型并进行推理。可能还需要安装Python绑定,如llama-cpp-python库,并确保其与系统已安装的CUDA版本兼容。 另外,用户可能关心内存和显存的需求。7B的模型在GGUF格式下,量化等级不同会影响资源使用。例如,Q4_K_M的量化可能需要约5-6GB内存,而用户有16G内存和8GB显存的4060,应该足够运行,但需要根据量化等级调整参数。 最后,测试模型是否正常运行,处理可能的错误,比如缺少动态库、权限问题,或者模型加载失败。建议用户查看日志,安装必要的依赖,如OpenBLAS或其他数学库,以优化性能。 可能还需要注意Python环境的管理,使用虚拟环境如venv或conda来隔离依赖,避免与系统包冲突。同时,引用[1]中提到Qwen2.5-VL-72B的表现优异,但用户使用的是7B版本,可能需要调整预期性能,尤其是在处理视觉任务时的输入预处理步骤,不过GGUF模型可能仅支持文本,需确认模型是否是多模态的。如果Qwen2.5-VL-7B是视觉语言模型,可能需要额外的步骤处理图像输入,但GGUF格式可能仅支持部分功能,需查阅文档确认。 总结步骤大致为:安装依赖→下载模型→编译推理引擎→配置环境→运行测试。过程中需详细说明每个步骤的命令和可能遇到的问题,确保用户能逐步跟随操作。</think>### 在Ubuntu 22.04上部署Qwen2.5-VL-7B-Instruct-GGUF模型的步骤 #### 一、环境准备 1. **安装NVIDIA驱动和CUDA工具包** ```bash sudo apt update sudo apt install nvidia-driver-535 cuda-toolkit-12-2 ``` 安装完成后验证: ```bash nvidia-smi # 查看GPU状态 nvcc --version # 查看CUDA版本 ``` 2. **安装基础依赖** ```bash sudo apt install build-essential cmake python3-pip python3-venv ``` #### 二、获取模型文件 1. **下载GGUF模型文件** 从Hugging Face或ModelScope获取模型文件(例如`qwen2.5-vl-7b-instruct.Q4_K_M.gguf`): ```bash wget https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct-GGUF/resolve/main/qwen2.5-vl-7b-instruct.Q4_K_M.gguf ``` #### 三、编译llama.cpp 1. **克隆仓库并编译** ```bash git clone https://github.com/ggerganov/llama.cpp cd llama.cpp make clean && LLAMA_CUDA=1 make -j8 ``` 编译参数说明: - `LLAMA_CUDA=1` 启用CUDA加速 - 若遇到架构错误,可通过`CMAKE_CUDA_ARCHITECTURES=89`指定RTX 4060的算力 #### 四、运行推理 1. **使用命令行测试** ```bash ./main -m /path/to/qwen2.5-vl-7b-instruct.Q4_K_M.gguf -n 512 --color -p "描述这张图片的内容:" ``` 参数说明: - `-n` 控制生成文本长度 - `--temp` 调整生成随机性 2. **Python API调用** 安装`llama-cpp-python`: ```bash pip install llama-cpp-python[cuBLAS] --force-reinstall --upgrade ``` 编写测试脚本: ```python from llama_cpp import Llama llm = Llama( model_path="qwen2.5-vl-7b-instruct.Q4_K_M.gguf", n_gpu_layers=35, # 根据显存调整层数 n_ctx=2048 ) response = llm.create_chat_completion( messages=[{"role": "user", "content": "描述这张图片的内容:"}] ) print(response["choices"][0]["message"]["content"]) ``` #### 五、性能优化建议 1. **量化等级选择** | 量化类型 | 文件大小 | 显存占用 | 质量保留 | |---------|----------|----------|----------| | Q2_K | ~3GB | 4GB | 低 | | Q4_K_M | ~5GB | 6GB | 中 | | Q6_K | ~7GB | 8GB | 高 | 2. **Batch参数调整** ```python llm = Llama( ... n_batch=512, # 增大batch提升吞吐量 n_threads=8 # 匹配CPU核心数 ) ``` #### 六、常见问题解决 1. **CUDA内存不足** ```bash export PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:128 ``` 2. **缺少cuBLAS库** ```bash sudo apt install libopenblas-dev ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值