导频矢量推导与离散信号傅里叶变换

本文探讨了周期信号与非周期信号在傅里叶变换中的特性,包括周期信号的频率间隔和非周期信号的连续频谱。还介绍了傅里叶变换从连续到离散的推导过程,并详细阐述了离散傅里叶变换(DFT)的定义及其与导频矢量的关系。
摘要由CSDN通过智能技术生成

一、周期信号与非周期信号的傅里叶变换        

        对于一个周期信号而言,信号谐波之间的间隔是1/T(Hz)。当周期较大时,谐波之间的间隔减小。对于非周期信号T\rightarrow \infty,基频和谐波之间的间隔会非常小,即\Delta f\rightarrow 0,这时信号的频谱变为连续函数。·

二、傅里叶变换的时域离散化推导

        连续信号推广到离散信号,在时间域对信号进行离散采样,连续的时间t变为离散的时间nT_{s}。于是离散傅里叶变换为:

X(f)=\sum_{n=0}^{\infty }x(n)e^{-j2\pi f\frac{n}{f_{s}}})

 三、傅里叶变换的频域离散化推导

        由于计算时间的限制,DFT应该在有限的频率范围内进行评估。如果将0\sim f_{s}范围内的频带分割成N个离散的点,则可以引入一个离散的变量k,用于频率,如k=0\sim N-1,则f表示为:

f=\frac{kf_{s}}{N}

        于是离散傅里叶变换(式6.18)变为:

X(\frac{kf_{s}}{N})=\sum_{n=0}^{\infty }x(n)e^{-j2\pi \frac{kf_{s}}{N}\frac{n}{f_{s}}}

        则:

X(\frac{kf_{s}}{N})=\sum_{n=0}^{\infty }x(n)e^{-j2\pi \frac{kn}{N}}

        即:

X(k)=\sum_{n=0}^{\infty }x(n)e^{-j2\pi \frac{kn}{N}}

        引入变量W,表示为:W_{N}=e^{-j\frac{2\pi }{N}},则:

X(k)=\sum_{n=0}^{\infty }x(n)W_{N}^{nk}

        上式中W_{N}^{nk}即为导频矢量,对于每一个k_{0},其对应的N个标量W_{N}^{nk_{0}}组成了对应的导频矢量。全部N(对应k)个导频矢量便可以组成一组滤波器组,该滤波器组可以估计得到该信号的频谱。

·

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

动力澎湃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值