Python深度学习实战:Keras与高级多层感知器——用序列化保存模型
深度学习的模型有可能需要好几天才能训练好,如果没有SL大法就完蛋了。本章关于如何保存和加载模型。本章将:
- 使用HDF5格式保存模型
- 使用JSON格式保存模型
- 使用YAML格式保存模型
我们开始吧。
简介
Keras中,模型的结构和权重数据是分开的:权重的文件格式是HDF5,这种格式保存数字矩阵效率很高。模型的结构用JSON或YAML导入导出。
本章包括如何手工修改HDF5文件,使用的模型是这一章的皮马人糖尿病模型。
HDF5文件
分层数据格式,版本5(HDF5)可以高效保存大实数矩阵,例如神经网络的权重。HDF5的包需要安装:
sudo pip install h5py
使用JSON保存网络结构
JSON的格式很简单,Keras可以用to_json()把模型导出为JSON格式,再用*model_from_json()*加载回来。
模型和权重加载后需要编译一次ÿ