2021年Python十佳ML库大盘点,国产选手GitHub半年获5k+star,第一名是升级版NumPy(2)

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、全套PDF电子书

书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

四、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

五、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

六、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

1. Awkward Array

根据官方介绍,Awkward Array用于嵌套的、大小不一的数据,包括任意长度的列表、记录、混合的类型和缺失数据,使用起来类似NumPy

看起来像是升级版的NumPy呀。

3dba237f7ae2bdf2ad99813d8bfd79a6.png

果然,不同长度的数组可以直接放在一起运算。

ae69b8b33d61044e94b7ed86a32a622c.png

并且,官方表示Awkward Array不仅使用起来更简便,在速度内存上也有量级的优势。

看看是不是可以安排上了~

https://pypi.org/project/awkward/

2. Jupytext

相信大家对Jupyter Notebook都不陌生。

当你有了Jupytext这个小插件就可以将Jupyter Notebook和IDE完美结合,听起来是不是很棒!

从此Jupyter Notebook可以被存储为Markdown文件或多种语言的脚本文件。

Jupytext可以做的事主要有:

  • Jupyter Notebook的版本控制
  • 在你喜欢的文本编辑器中编辑、合并或重构Notebook
  • 在Notebook上使用Q&A检查

在Python中使用的样子:

77b0997738b3fc409bd536deb2ceb8de.png

此项目在Github上已有5k+star。

https://github.com/mwouts/jupytext

3. Gradio

比Streamlit还轻量UI设计库Gradio让你轻松在浏览器中“玩转”你的模型,可以直接在浏览器中拖放图片,粘贴文字,录制声音,等等。

1247fbded340320320ac3436d434ea31.png

8c56d2691020363329ec2a4b94aef045.gif

只要将launch()函数中的参数设置为share=True,还能得到一个可分享网址,拿到链接的朋友在电脑和手机端都能打开,活脱脱就是一个小程序

时常需要做Demo的小伙伴快看起来吧,此项目在Github上已有4.5k+star。

https://github.com/gradio-app/gradio

4. Hub

这个Hub在数据管理和数据预处理上可是一把好手。

24b51ef843d66ebd82c4593041ebcf3c.png

它可以处理任何类型任何大小的数据,并且因为数据储存在云端上,所以可以无缝在任何机器上访问。

被压缩为二进制字节的数据可以被存储在任何地方,并且只有在需要的时候才会被获取,所以没有TB级硬盘也可以处理TB级数据

Hub贴心地提供了重要API,支持数据在常用工具(PyTorch等)上的使用,数据版本控制,数据转换等功能。

此项目在github上已有4.1k+star。

https://github.com/activeloopai/Hub

5. AugLy

AugLy是facebook最新推出的数据增强库,同时支持语音文本图像视频类型的数据,包含了100多种增强方式。

5af1933659cb80e5dd7c78879fc9d175.png

数据对于模型训练至关重要,而标注大规模数据十分困难。由于人力资源,和模型特性的限制,数据增强的应用越来越广泛。

AugLy的优点

  • 处理类型更为全面。其他的数据增强库,例如Albumentations和NVIDIA DALI,主要负责图像相关数据的处理,文字数据不支持。
  • 处理方式十分人性化。AugLy可以将一张图片做成备忘录,在图片/视频上叠加文字/Emojis,转发社交媒体上的截图,还可以帮助你处理诸如拷贝检测、仇恨言论检测或版权侵权等问题。

此项目在Github上已有4.1k+star。

https://github.com/facebookresearch/AugLy

6. Evidently

Evidently是用来监测模型效果的工具,可从Pandas DataFrame或csv文件中生成交互式可视化报告JSON格式效果简介。在Jupyter Notebook中可以使用。

2c07c8bef5c73ee860cc030c791670aa.png

目前可以提供6种报告:数据漂移、数值目标漂移、分类目标漂移、回归模型性能、分类模型性能和概率分类模型性能。

此项目在Github上已有1.8k+star。

https://github.com/evidentlyai/evidently

7. YOLOX

如果你熟悉YOLO的话,那你或许会对旷视今年推出的YOLOX感兴趣。

YOLO就是那个目标检测算法,可以被使用在汽车自动驾驶等前沿技术中。

YOLOX是YOLO的无锚版本,设计更简单,但性能更好!它的目标是在研究界和工业界之间架起一座桥梁,同时弥合两方之间的差距。

938341272c3dce2b41280a1a6efe800b.png
f14b8c76cd76eaf6984d6848bb895030.png

这个Github上的开源项目在短短半年内已获得5.2k+star。

https://github.com/Megvii-BaseDetection/YOLOX

8. LightSeq

正如它的名字一样,LightSeq是一款由字节跳动开发的支持BERT、GPT、Transformer等众多模型的超快推理引擎。

be1e81625d0025d08ef765451f4c1d06.png

可以看到它的表现,比FasterTransformer还要Fast

10b33cb5aa56ed4f4d317227b95bfd99.png

LightSeq支持的模型也是非常全面

bf15648c727ffb4302c589d4a966a5cf.png

总之就是两个字“好用”。此项目在Github上已有1.9k+star。

https://github.com/bytedance/lightseq

(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值