多目标跟踪MOTR: End-to-End Multiple-Object Tracking with TRansformer_目标跟踪_qq_1041357701-开放原子开发者工作坊
https://blog.csdn.net/ZauberC/article/details/124553241
简介:
时间:2021
会议:ECCV
作者:Fangao Zeng, Bin Dong, Yuang Zhang, Tiancai Wang,Xiangyu Zhang, and Yichen Wei
摘要:
扩展了 DETR并引入了 “track query” 来对整个视频中的跟踪实例进行建模
提出了 tracklet 感知标签分配来训练 track 查询和新生对象查询
创新点:
①提出MOTR 完全端到端的 MOT 框架,可以以联合方式隐式学习外观和位置差异
②将 MOT 表述为序列预测集的问题,从之前的隐藏状态生成跟踪查询,用于迭代更新和预测
③ 提出了一种新的标签分配策略TALA,用于训练跟踪查询和新出现对象查询
④提出 TAN ,通过聚合历史状态信息,增强了对长时间序列的建模能力
⑤提出了一种新的损失函数CAL,用于在训练过程中考虑整个视频序列