MOTR: End-to-End Multiple-Object Tracking with Transformer

多目标跟踪MOTR: End-to-End Multiple-Object Tracking with TRansformer_目标跟踪_qq_1041357701-开放原子开发者工作坊
https://blog.csdn.net/ZauberC/article/details/124553241

简介:

时间:2021

会议:ECCV

作者:Fangao Zeng, Bin Dong, Yuang Zhang, Tiancai Wang,Xiangyu Zhang, and Yichen Wei

摘要:

扩展了 DETR并引入了 “track query” 来对整个视频中的跟踪实例进行建模

提出了 tracklet 感知标签分配来训练 track 查询和新生对象查询

创新点:

①提出MOTR 完全端到端的 MOT 框架,可以以联合方式隐式学习外观和位置差异

②将 MOT 表述为序列预测集的问题,从之前的隐藏状态生成跟踪查询,用于迭代更新和预测

③ 提出了一种新的标签分配策略TALA,用于训练跟踪查询和新出现对象查询

④提出 TAN ,通过聚合历史状态信息,增强了对长时间序列的建模能力

⑤提出了一种新的损失函数CAL,用于在训练过程中考虑整个视频序列

与DETR对比:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值