一、前言
适逢寒假,刚刚分手,又一个寒冷的冬天。
在家无聊,Chatgpt最近蛮火的,便开始学习了一下NLP,接触到了BERT。
这篇博客将讲一讲我从零到跑通中文文本相似度计算的过程。
只是想使用BERT的话直接跳转到五
二、BERT简介
对于BERT的原理,其他博主已经做了许多介绍,并且十分详尽。
在这里略述一些作为入门
BERT是一种预训练语言模型(pre-trained language model, PLM),其全称是Bidirectional Encoder Representations from Transformers。
- 语言模型:对于任意的词序列,它能够计算出这个序列是一句话的概率。比如词序列A:“知乎|的|文章|真|水|啊”,这个明显是一句话,一个好的语言模型也会给出很高的概率,再看词序列B:“知乎|的|睡觉|苹果|好快”,这明显不是一句话,如果语言模型训练的好,那么序列B的概率就很小很小。
下面给出较为正式的定义:
假设我们要为中文创建一个语言模型, V V V表示词典, V = { 猫 , 狗 , 机器 , 学习 , 语言 , 模型 , … } V=\{ 猫,狗,机器,学习,语言,模型,…\} V={猫,狗,机器,学习,语言,模型,…}, w i ∈ V w_i∈ V wi∈V
语言模型就是这样一个模型:给定词典 V V V,能够计算出任意单词序列 w 1 , w 2 , . . . , w n w_1 , w_2 , . . . , w_n w1,w2,...,wn,是一句话的概率 p ( w 1 , w 2 , . . . , w n ) p(w_1,w_2,...,w_n) p(w1,w2,...,wn)其中, p > = 0 , p > = 0 , p > = 0 p > = 0 ,p>=0,p>=0 p>=0,p>=0,p>=0——以上摘自 语言模型的概念
- 预训练:预训练是一种迁移学习的概念。所谓预训练模型,举个例子,假设我们有大量的维基百科数据,那么我们可以用这部分巨大的数据来训练一个泛化能力很强的模型,当我们需要在特定场景使用时,例如做医学命名实体识别,那么,只需要简单的修改一些输出层,再用我们自己的数据进行一个增量训练,对权重进行一个轻微的调整即可。预训练语言模型有很多,典型的如ELMO、GPT、BERT等。
- Transformer
Bert是基于Transformer实现的,BERT中包含很多Transformer模块,其取得成功的一个关键因素是Transformer的强大作用。
Transformer可以理解为一个神经网络模块,模块内部有其复杂的网络结构,我们可以暂且将其视为黑盒,这并不影响对Bert的理解。总之,这个模块通过自注意力机制实现快速并行,改进了RNN最被人诟病的训练慢的缺点,并且可以增加到非常深的深度,充分发掘DNN模型的特性,提升模型准确率。
BERT的原理一层层深究下去是这样的:【BERT】–【Transformer】–【self-attention】–【attention机制】–【seq2seq】
三、准备工作
1、下载
- 下载goole-bert:https://github.com/google-research/bert
- 下载anaconda: https://www.anaconda.com/products/distribution#macos
- 下载pycharm:https://www.jetbrains.com/pycharm/download/#section=windows
2、conda换源
在anaconda prompt 里执行:
conda config --set show_channel_urls yes
在用户目录下建立了.condarc文件,地址为C:\Users(你的用户名).condarc添加清华源
channels:
- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
- http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
show_channel_urls: true
四、anaconda安装tensorflow
- 根据google代码的requirements,安装了tensorflow1.15.0版本,对应python版本为3.6,keras版本为2.3.1
1、建立tensorflow虚拟环境
conda create -n tensorflow1.15.0 python=3.6
2、安装tensorflow
这里安装的是CPU版本,GPU版本可以自行探索,也比较容易
conda activate tensorflow1.15.0
conda install tensorflow==1.15.0
conda install keras==2.3.1
pip install tensorflow_hub -i http://mirrors.aliyun.com/pypi/simple/
conda install jieba
到此,在pycharm里使用conda环境中tensorflow的python作为解释器,就可以跑通bert的代码了
五、计算文本相似度
1、安装bert-as-servic
在anaconda prompt中进入BERT项目的文件目录
输入:
pip install bert-serving-server
pip install bert-serving-client
2、下载模型
- 我使用的是BERT-wwm, Chinese,下载链接为tensorflow中文维基https://drive.google.com/file/d/1RoTQsXp2hkQ1gSRVylRIJfQxJUgkfJMW/view
3、启动bert
我把上面下载的中文预训练模型放置在D:\迅雷下载\bert-master\bert-master\model\chinese_wwm_L-12_H-768_A-12
此时需要在命令行中输入
bert-serving-start -model_dir D:\迅雷下载\bert-master\bert-master\model\chinese_wwm_L-12_H-768_A-12 -num_worker=2
出现下图界面则表示成功
4、使用预训练词向量(中文测试)
启动bert-serving之后,在pycharm中新建一个python文件,输入以下代码
from bert_serving.client import BertClient
import numpy as np
def main():
bc = BertClient()
doc_vecs = bc.encode(['今天天空很蓝,阳光明媚', '今天天气好晴朗', '现在天气如何', '自然语言处理', '机器学习任务'])
print(doc_vecs)
print(cos_similar(doc_vecs[0],doc_vecs[1]))
def cos_similar(sen_a_vec, sen_b_vec):
'''
计算两个句子的余弦相似度
'''
vector_a = np.mat(sen_a_vec)
vector_b = np.mat(sen_b_vec)
num = float(vector_a * vector_b.T)
denom = np.linalg.norm(vector_a) * np.linalg.norm(vector_b)
cos = num / denom
return cos
if __name__ == '__main__':
main()
控制台输出
前四个列表为这五个文本的768维的词向量,0.9508826990924573为文本0和文本1的相似度
六、一些报错
1、报错ImportError: cannot import name ‘abs’
- 原因:tensoflow与protobuf的版本不匹配
- 解决:删除环境重新安装
2、报错No module named ‘tensorflow_hub’
- 原因:没有安装tensorflow_hub
- 解决:pip install tensorflow_hub -i http://mirrors.aliyun.com/pypi/simple/
3、报错ImportError: cannot import name ‘trace‘
- 原因:tensorflow与tensorflow-estimator的版本不一致
- 解决:重新pip安装tensorflow-estimator对应版本
4、一些小坑
-
在conda中,因为换过源,所以在用conda安装一些包时不需要
-i http://XXX
进行换源。但如果是用pip进行安装,则需要用-i选择自己想要的国内镜像源 -
- 阿里云 http://mirrors.aliyun.com/pypi/simple/
-
- 中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/
-
- 豆瓣(douban) http://pypi.douban.com/simple/
-
- 清华大学 https://pypi.tuna.tsinghua.edu.cn/simple/
-
- 中国科学技术大学 http://pypi.mirrors.ustc.edu.cn/simple/
5、报错InternalError (see above for traceback): Blas GEMM launch failed
- 这个对于个人电脑来说,一般是显存爆了,就…换电脑吧。
6、报错from typing import OrderedDict ImportError: cannot import name ‘OrderedDict‘ from ‘typing‘
- 这个引用一下我很佩服的一个老哥的文章,文章地址https://blog.csdn.net/qq_41368074/article/details/119491483
七、结尾
写到这也要吃饭了,哎,生活还得过下去…
加油,平凡但为生活而努力的你我!