大模型目前在可以说正处于一种“炙手可热”的状态,吸引了很多人的关注和兴趣,也有很多新人小白想要学习大模型技术,转战AI领域,以适应未来的大趋势,寻求更有前景的发展!
那么,如何入门大模型呢?
下面给大家分享一份2025最新版的大模型学习路线,帮助新人小白更系统、更快速的学习大模型!
有需要完整版学习路线,可以微信扫描下方二维码
,立即免费领取!
2025最新大模型学习路线
一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。
一、大模型基础篇
第一阶段基础篇:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。
1、大语言模型的基本情况介绍
-
初识大模型
-
OpenAI模型的发展历程
-
主流国产大模型
-
大模型赋能行业分析
-
未来展望:大模型的趋势与挑战
2、大模型核心原理
-
理解大模型成功的背后
-
理解生成式模型与大语言模型
-
大模型应用实例与Prompt使用技巧
-
Transformer架构解析
-
关键技术解析:预训练、SFT、RLHF
-
交互式讨论:当前大模型应用场景
3、提示工程
-
AI开发环境
-
提示工程基础
-
提示工程进阶
-
实战项目:基于提示工程的前端界面代码生成实战
二、大模型进阶篇
第二阶段进阶篇:进阶篇是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
1、RAG
-
检索增强生成
-
Naive RAG Pipeline
-
实战项目:基于向量检索的RAG实现公司HR制度智能问答系统项目
2、Advanced-RAG
-
Advanced RAG前沿Paper解读
-
商业化RAG分析与优化方案实践
3、RAG项目评估
-
RAG效果评估
4、RAG热门项目精讲
-
RAGFlow应用分析
-
FastGPT应用分析
-
QAnything应用分析
-
LangChain-chatchat应用分析
-
GraphRAG应用分析
-
实战:基于Dify实现K12教育行业智能助教
大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。
5、Langchain
-
什么是开发框架
-
什么是langchain、它的意义是什么?
-
LangChain的核心组件
-
实战项目:基于LangChain的企业知识库实战
6、LlamaIndex
-
LlamaIndex是什么
-
LlamaIndex的优势与劣势
-
LlamaIndex与RAG检索增强联合应用实践
-
LlamaIndex与LangChain对比分析
7、Agent
-
Agents关键技术分析
-
Funcation Calling
-
Agent认知框架
-
实战项目:命理Agent机器人实战
-
多Agent系统
-
实战项目:多智能体协同代码生成应用
8、可视化框架
-
GPTS
-
Coze扣子
-
Dify
9、项目实战
-
实战项目:公司HR制度智能问答系统商业化实战
-
实战项目:智能电商客服系统
三、大模型实战篇
第三阶段实战篇:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。
1、Transformer
-
Transformer结构理解
-
理解Self-Attention
-
理解Encoder与Decoder
-
Multi-head Attention
-
不同Decoding方法
2、Open source(开源)
-
私有化大模型的必要性
-
国外开源模型生态
-
国内开源模型生态
-
开源模型的三种评估方式
-
开源模型应用场景与局限性
-
实战案例:ChatGLM大模型在Ollama上的部署
3、Fine-Tuning(微调)
-
模型微调简介
-
如何选择合适的基座模型
-
数据集的收集与预处理
-
数据集的收集与预处理
-
微调训练框架的选择
4、PEFT fine-turning
-
PEFT 主流技术介绍
-
LoRA 低秩适配微调
-
LoRA 的改进和扩展
-
实战案例:ChatGLM在医疗领域的LoRA微调
5、Quantlzation(量化)
-
模型显存占用与量化技术简介
-
Transformers 原生支持的大模型量化算法
-
AWQ:激活感知权重量化算法
-
GPTQ:专为 GPT 设计的模型量化算法
-
模型量化对比实例
-
实战案例:ChatGLM的量化演示
6、Application Engineering(应用工程)
-
大模型应用工程
-
大模型AI工程平台 (MoPaaS)
-
打造私有化模型 — 智能时代企业关键的 IP
-
私有化大模型部署LLaMA3.1 项目实践
7、multimodal(多模态)
-
什么是多模态模型
-
多模态的应用场景
-
图像生成技术概述
-
DALLE-3与Midjourney
-
Stable Diffusion与ControlNet
-
语音生成技术概述
-
主流TTS技术剖析
-
案例:Video-LLaVA与多模态图像视频识别
8、微调大实战:基于LLaMA3.1-8B做医疗领域微调大实战
-
真实的医疗数据集
-
数据清洗技术应用
-
开源大模型做基座
-
LoRA微调应用
-
AdaLoRA微调应用
-
LongLoRA微调应用
整个大模型学习路线基础篇主要是对大模型的理论基础、核心原理以及提示词的学习掌握;而进阶实战篇更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】