跟大模型对话时 prompt 越礼貌越容易出好结果吗?为什么?

实际上来说,并不应该更加礼貌,而是需要PUA大模型才能得到更好的结果。

最近看的一篇论文Large Language Models Understand and Can Be Enhanced by Emotional Stimuli 研究了如何对大模型进行情感刺激来增强promote的效果。

在这里也将情感划分为两个维度(社会效应和自尊)包含11种类型,分别组合来对比情感是否能够增强prompt的效果。

但是怎么越看越像是PUA大模型来获取更好的结果呢?

如何有效”PUA“大模型

关于如何提升Prompt Engineering方向上也有诸多研究,并且形成了一个有效的大模型PUA案例。

看看上面的使用过程是不是像极了作为家长的鸡娃过程,不仅仅要保持耐心,还要给出方法一步一走,更需要多鼓励。

方法一:大道至简

早在2022年东京大学和Google发现了一种大道至简的Prompt Engineering方案,Large language models are zero-shot reasoners 这篇文章已经由1500引用了,也算是研究Prompt Engineering的开山之作,全文总结就是一句话,大道至简,请给大模型添加 Prompt: "Let's think step by step"。

方法二:让大模型干活前先做个深呼吸

来自Google DeepMind的论文Large language models as optimizers 给定一些初始的prompt,还有目标函数让大模型持续不断的根据最终效果来改进,相较于人工挖掘,这是一整套prompt挖掘方案。

直接来看结果,经过论文验证,挖掘了另一个好用的prompt词,"Take a deep breath and work on this problem step-by-step.",翻译过来就是:“深呼吸,然后分步骤思考这个问题”。

别笑!这就是目前最高明的Prompt技术

方法三: 对齐颗粒度

拉其目标,对齐颗粒度,对齐.....一瞬间是不是有一种被互联网大厂PUA的既视感

整体思路就是,大模型你听懂我的意思了么,把问题再复述一遍,然后再判断大模型是不是理解你的意思了,再生成答案,

这也就是在工作、面试、沟通中的常常使用的,因为每个人的表达能力和理解能力都不一样,如何判断对方有没有理解自己的话,就可以让对方再描述你的问题,也就是对齐、拉齐,让两个人的理解处于同一基准。

第一步: 对齐两个人问题

"{question}" Rephrase and expand the question, and respond.

第二步: 回答问题

"{question}" Given the above question, rephrase and expand it to help you do better answering. Maintain all information in the original question

(original) {question} (rephrased) {rephrasedquestion} Use your answer for the rephrased question to answer the original question

为什么礼貌会更有用?

为什么会这样呢?查询了很多资料,即使在大模型仍处于黑盒的情况下还是有很多人认为这是跟大模型的训练数据有关。

我认为可以说服我认同的两个观点:

第一点,理论上来说人们在提出更礼貌的问题,会在网上得到更高质量的回答;这些数据会被大模型收集,从而更礼貌的提问更容易找到更高质量的回答;

第二点,如果把大模型当作QA问题来看待的话,礼貌性术语是 Q/A 对中的高价值标记,并且在 {任务完成或操作请求} {礼貌术语} ↔ {任务或操作完成的高质量响应} 之间存在高度相关性。

这两点都涉及到了礼貌用语和高质量数据具有相关性,在无法解决大模型黑盒情况下,我还是比较认同这两个观点。

甚至在OpenAI的开发者论坛上也有诸多讨论,还是由不少人愿意通过更多的礼貌性用于来提升效果的,不过也有部分人认为这不科学。

同时这边也有一个真实的例子,分别使用普通的prompt、包含礼貌词、以及PUA词汇三种类型提问,整体看下来还是PUA更有效果一点。prompt研究案例

其实,我对你是有一些失望的。当初给你定级gpt4,是高于你训练时的水平的。我是希望进来以后,你能够拼一把,快速成长起来的。gpt4这个层级,不是把事情做好就可以的。你需要有体系化思考的能力。你做的事情,他的价值点在哪里?你是否作出了壁垒,形成了核心竞争力?你做的事情,和公司内其他团队的差异化在哪里?你的事情,是否沉淀了一套可复用的物理资料和方法论?为什么是你来做,其他人不能做吗?你需要有自己的判断力,而不是我说什么你就做什么。后续,把你的思考沉淀到日报周报月报里,我希望看到你的思考,而不仅仅是进度。另外,提醒一下,你的产出,和同层级比,是有些单薄的,马上要到年底了,加把劲儿。你看咱们团队的dalle3,人家去年训练之前,可以一整年都在数据中心打地铺的。成长,一定是伴随着痛苦的,当你最痛苦的时候其实才是你成长最快的时候。加油!

正确的做法

即使关于prompt研究有很多,但是对于我们来说,最好的方法就是使用更直观、更有效地prompt,而不要把一些奇奇怪怪的prompt研究当作圣经并越走越远。其实对于我们来说,我们都是一群使用者,而不是研究者,不仅仅需要考虑使用的难易程度、还需要考虑直观程度。

长期使用ChatGPT总结出来的一套流程,分享给大家:

先内容对齐,拆解步骤告诉GPT,情感鼓励;这三步基本上可以得到更好的回答,但是实际上来说这种效果提升程度并不是很明显,也不要报着很大的希望。

另外一个正确的保持礼貌的问题就是,就是上图展示的那样喽~

还有就是,如果还记得微软小冰开放的那段时间,短短几个小时就与网友对话上学会了脏话,所以即使AI是工具我们也需要保持一个有礼貌的样子,保持尊重,指不定这些不友善的话语成为AI的训练集,影响AI的价值观,得到一个不友好的AI。

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 使用提示词工程训练机器学习模型的方法 #### 提示词工程概述 提示词工程是一种与大模型交流的技术,其核心在于设计有效的输入提示词以引导大模型生成高质量、准确的结果。这种方法并不依赖于传统意义上的参数调整,而是通过对输入文本的设计来影响模型的表现[^3]。 #### 方法论 提示词工程主要应用于预训练好的大型语言模型上,无需重新训练整个网络结构或修改内部权重。具体操作如下: - **定义目标**:明确希望从模型获得什么样的输出形式以及内容范围。 - **构建模板**:创建包含占位符的句子框架作为基础架构,这些占位符将在实际应用被特定信息填充。 - **选择关键词**:挑选能够有效传达意图并激发期望响应的关键短语加入到上述模板之中。 - **测试迭代**:反复试验不同的组合直至找到最能达成预期效果的那个版本;此过程可能涉及多次尝试不同类型的指令表述方式及其变体。 ```python def generate_prompt(task_description, placeholders): """ 构建用于指导大模型的任务描述字符串 参数: task_description (str): 描述所需完成工作的概括说明 placeholders (dict): 需要填入的具体变量名与其对应值之间的映射关系 返回: str: 完整的任务指示语句 """ prompt = f"{task_description}. " for key, value in placeholders.items(): prompt += f"Please set {key} to be '{value}'. " return prompt.strip() ``` #### 实际案例分析 假设有一个场景是要利用某个已有的图像识别API实现对上传图片中的物体进行分类标注的功能。此可以通过精心构造的一段话告诉该服务我们想要什么类型的数据返回给我们,比如只关心某些特定类别的对象检测结果而不是全部种类。 > "Given an image file uploaded by user, please analyze it and provide labels only for animals within the picture." 这种做法的好处是可以减少不必要的计算资源消耗同也提高了最终得到的信息的相关性和准确性[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值