【4.8k Star Xinference部署】为知识库接入本地Rerank模型,全面提升检索效率

首先说说为什么会想要部署 Xinference?

起因是因为前几天白嫖的 Jina API token 用完了,而付费的话又感觉自己的那些知识库没有必要使用商用的(好吧好吧,其实还是舍不得花钱😂),开源免费的对我来说也足够了,所以想要找找可以本地部署的。

刚开始想使用 Ollama 的,不过查了下它好像不支持 Rerank 模型,因此又找上了 Xinference 这款产品。

简介

Xorbits Inference (Xinference) 是一个开源平台,用于简化各种 AI 模型的运行和集成。借助 Xinference,我们可以使用任何开源 LLM、嵌入模型和多模态模型在云端或本地环境中运行推理,并创建强大的 AI 应用。

它支持的模型种类有:

  • 语言模型:比如 qwen2、baichuan、deepseek、gemma 等场景的语言模型
  • Embedding 模型:有 Jina 的 Embedding 模型(结合 Rerank,知识库检索不就起来了嘛😁);
  • Rerank 模型:有 Jina 的 Rerank 模型;
  • 图像模型:除了 Stable Diffusion 之外,还有 Flux 模型;
  • 语音模型:有 ChatTTS 以及 whisper 等等;
  • 视频模型:这类模型还没了解过,Xinference 里是 CogVideoX 模型;
  • 自定义模型:需要先注册,然后才可以在这里看到;

相较于 Ollama 来说,Xinference 在部署之后会为我们提供一个可视化界面,我们可以通过图形化界面安装部署大模型,这个下来会详细进行讲解。

部署

官方介绍了三种部署方式,分别是:

  • 本地运行:也就是使用终端命令行的方式进行部署,需要 Python 环境;
  • 在集群中部署:对于个人用户来说用不上,虽然现在都在上云,但是 Kubernetes 的使用还是多存在于企业中;
  • 使用 Docker 部署:废话不多说,Run 起来!

在使用 Docker 部署 Xinference 时,如果你的机器有 GPU,可以执行(把 your_version 改为你想运行的镜像版本,比如 latest):

docker run -e XINFERENCE_MODEL_SRC=modelscope -p 9998:9997 --gpus all xprobe/xinference:<your_version> xinference-local -H 0.0.0.0 --log-level debug

如果是只有 CPU 的机器,则执行:

docker run -e XINFERENCE_MODEL_SRC=modelscope -p 9998:9997 xprobe/xinference:<your_version>-cpu xinference-local -H 0.0.0.0 --log-level debug

在启动容器之后,我们访问 localhost:9998 就可以看到这样一个页面:

大概介绍一下界面构成:

  • Launch Model:其实就是目前 Xinference 里内置支持的模型,种类繁多,大家自行选择;
  • Running Models:在 Xinference 中已经下载和运行起来的模型
  • Register Model:对于 Custom Models 来说,需要先注册,才能运行;
  • Cluster Information:在这个页面里可以看到项目运行时的资源消耗情况

实战:安装 Rerank 模型并集成到 Dify 中

在 RERANK MODELS 中选择一个模型进行部署启动,以 bce-reranker-base_v1 为例:

点击左下角的那个小火箭开启下载~

下载好之后,可以到 Running Models 中的 RERANK MODELS 里看到对应的模型:

我们到 Dify 中集成一下 Xinference(在模型供应商的地方):

因为我们下载的是 Rerank 模型,所以这里「模型类型」为 Rerank 模型;

模型名称和模型 UID 分别填入下图中红框框住的部分(ID 对应 UID,名称对应 Name):

服务器 URL 这里填http://host.docker.internal:9998,这样写的原因在之前的文章中《Dify 教程二:使用本地大模型 Ollama》也说过。如果不是 Docker 部署而是本地运行或者集群部署则可以直接写「服务器 IP:端口号」。

保存!开测~

在 Dify 中新建一个知识库,并上传数据集(本次上传了《断舍离》这本书进行测试),知识库的检索设置如下:

最终得到 261 个分段,召回测试如下:

我们将这个知识库加到应用中试试看:

效果还不错,感兴趣的小伙伴可以试试看。

觉得有用的大佬,轻抬小手 点赞收藏关注

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值