Qwen2-VL微调实战:LaTex公式OCR识别任务全攻略!

Qwen2-VL

《SwanLab机器学习实战教程》是一个主打「开箱即用」的AI训练系列教程,我们致力于提供完善的数据集、源代码、实验记录以及环境安装方式,手把手帮助你跑起训练,解决问题。

Qwen2-VL是通义千问团队最近开源的大语言模型,由阿里云通义实验室研发。

以Qwen2-VL作为基座多模态大模型,通过指令微调的方式实现特定场景下的OCR,是学习多模态LLM微调的入门任务。

本文我们将简要介绍基于 transformers、peft 等框架,使用 Qwen2-VL-2B-Instruct 模型在LaTeX_OCR 上进行Lora微调训练,同时使用 SwanLab 监控训练过程与评估模型效果。

◾ 作者:情感机器团队-林泽毅

◾ 训练过程:https://swanlab.cn/@ZeyiLin/Qwen2-VL-ft-latexocr/runs/1glks73k6u5gw98ovzwev/chart

◾ 代码:https://github.com/Zeyi-Lin/Qwen2-VL-finetune-LatexOCR

◾ 数据集:https://modelscope.cn/datasets/AI-ModelScope/LaTeX_OCR/summary

◾ 模型:https://modelscope.cn/models/Qwen/Qwen2-VL-2B-Instruct

◾ 在线LaTex公式预览网站:https://www.latexlive.com/

◾ 显存占用:约20GB,如显存不足,请调低per_device_train_batch_size

知识点:视觉大模型微调的场景与用法

视觉大模型是指能够支持图片/视频输入的大语言模型,能够极大丰富与LLM的交互方式。

对视觉大模型做微调的一个典型场景,是让它特化成一个更强大、更智能的计算机视觉模型,执行图像分类、目标检测、语义分割、OCR、图像描述任务等等。

并且由于视觉大模型强大的基础能力,所以训练流程变得非常统一——无论是分类、检测还是分割,只需要构建好数据对(图像 -> 文本),都可以用同一套代码完成,相比以往针对不同任务就要构建迥异的训练代码而言,视觉大模型微调要简单粗暴得多,而且效果还更好。

当然,硬币的另一面是要承担更高的计算开销,但在大模型逐渐轻量化的趋势下,可以预想这种训练范式将逐渐成为主流。

环境配置

环境配置分为三步:

1. 确保你的电脑上至少有一张英伟达显卡,并已安装好了CUDA环境。

2. 安装Python(版本>=3.8)以及能够调用CUDA加速的PyTorch。

3. 安装与Qwen2-VL微调相关的第三方库,可以使用以下命令:

python -m pip install --upgrade pip``# 更换 pypi 源,加速库的安装``pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple``   ``pip install modelscope==1.18.0``pip install transformers==4.46.2``pip install sentencepiece==0.2.0``pip install accelerate==1.1.1``pip install datasets==2.18.0``pip install peft==0.13.2``pip install swanlab==0.3.27``pip install qwen-vl-utils==0.0.8``pip install pandas==2.2.2

准备数据集

本节使用的是 LaTex_OCR 数据集,这个数据集包含了大量的数学公式图片,以及对应的LaTex语法字符串。可以看到,下图中的image就是学术公式图,text就是对应的LaTex语法字符串:

将这些LaTex语法字符串粘贴到latexlive中,可以预览对应的数学公式:

了解了数据集结构之后,我们需要做的是将这些数据整理成Qwen2-VL需要的json格式,下面是目标的格式:

[`  `{`    `"id": "identity_1",`    `"conversations": [`      `{`        `"role": "user",`        `"value": "图片路径"`      `},`      `{`        `"role": "assistant",`        `"value": "LaTex公式"`      `}`    `]`    `},``...``]

我们来解读一下这个json:

◾ **id:**数据对的编号

◾ **conversations:**人类与LLM的对话,类型是列表

◾ **role:**角色,user代表人类,assistant代表模型

◾ **content:**聊天发送的内容,其中user的value是图片路径,assistant的回复是LaTex公式

接下来让我们下载数据集并进行处理:

1. 我们需要做四件事情:

2. 通过Modelscope下载LaTex_OCR数据集

3. 加载数据集,将图像保存到本地

4. 将图像路径和描述文本转换为一个csv文件

5. 将csv文件转换为json文件,包含1个训练集和验证集

  1. 使用下面的代码完成从数据下载到生成csv的过程:

data2csv.py:

# 导入所需的库``from modelscope.msdatasets import MsDataset``import os``import pandas as pd``   ``MAX_DATA_NUMBER = 1000``dataset_id = 'AI-ModelScope/LaTeX_OCR'``subset_name = 'default'``split = 'train'``   ``dataset_dir = 'LaTeX_OCR'``csv_path = './latex_ocr_train.csv'``   ``   ``# 检查目录是否已存在``if not os.path.exists(dataset_dir):`    `# 从modelscope下载COCO 2014图像描述数据集`    `ds =  MsDataset.load(dataset_id, subset_name=subset_name, split=split)`    `print(len(ds))`    `# 设置处理的图片数量上限`    `total = min(MAX_DATA_NUMBER, len(ds))``   `    `# 创建保存图片的目录`    `os.makedirs(dataset_dir, exist_ok=True)``   `    `# 初始化存储图片路径和描述的列表`    `image_paths = []`    `texts = []``   `    `for i in range(total):`        `# 获取每个样本的信息`        `item = ds[i]`        `text = item['text']`        `image = item['image']``   `        `# 保存图片并记录路径`        `image_path = os.path.abspath(f'{dataset_dir}/{i}.jpg')`        `image.save(image_path)``   `        `# 将路径和描述添加到列表中`        `image_paths.append(image_path)`        `texts.append(text)``   `        `# 每处理50张图片打印一次进度`        `if (i + 1) % 50 == 0:`            `print(f'Processing {i+1}/{total} images ({(i+1)/total*100:.1f}%)')``   `    `# 将图片路径和描述保存为CSV文件`    `df = pd.DataFrame({`        `'image_path': image_paths,`        `'text': texts,`    `})``   `    `# 将数据保存为CSV文件`    `df.to_csv(csv_path, index=False)``   `    `print(f'数据处理完成,共处理了{total}张图片')``   ``else:`        `print(f'{dataset_dir}目录已存在,跳过数据处理步骤')

3. 在同一目录下,用以下代码,将csv文件转换为json文件(训练集+验证集):

csv2json.py:

import pandas as pd``import json``   ``csv_path = './latex_ocr_train.csv'``train_json_path = './latex_ocr_train.json'``val_json_path = './latex_ocr_val.json'``df = pd.read_csv(csv_path)``# Create conversation format``conversations = []``   ``# Add image conversations``for i in range(len(df)):`    `conversations.append({`        `"id": f"identity_{i+1}",`        `"conversations": [`            `{`                `"role": "user",`                `"value": f"{df.iloc[i]['image_path']}"`            `},`            `{`                `"role": "assistant",`               `"value": str(df.iloc[i]['text'])`            `}`        `]`    `})``   ``# print(conversations)``# Save to JSON``# Split into train and validation sets``train_conversations = conversations[:-4]``val_conversations = conversations[-4:]``   ``# Save train set``with open(train_json_path, 'w', encoding='utf-8') as f:`    `json.dump(train_conversations, f, ensure_ascii=False, indent=2)``   ``# Save validation set` `with open(val_json_path, 'w', encoding='utf-8') as f:`    `json.dump(val_conversations, f, ensure_ascii=False, indent=2)

此时目录下会多出3个文件:

  • latex_ocr_train.csv

  • latex_ocr_train.json

  • latex_ocr_val.json

至此,我们完成了数据集的准备。

模型下载与加载

这里我们使用modelscope下载Qwen2-VL-2B-Instruct模型,然后把它加载到Transformers中进行训练:

from modelscope import snapshot_download, AutoTokenizer``from transformers import TrainingArguments, Trainer, DataCollatorForSeq2Seq, Qwen2VLForConditionalGeneration, AutoProcessor``import torch``   ``# 在modelscope上下载Qwen2-VL模型到本地目录下``model_dir = snapshot_download("Qwen/Qwen2-VL-2B-Instruct", cache_dir="./", revision="master")``   ``# 使用Transformers加载模型权重``tokenizer = AutoTokenizer.from_pretrained("./Qwen/Qwen2-VL-2B-Instruct/", use_fast=False, trust_remote_code=True)``# 特别的,Qwen2-VL-2B-Instruct模型需要使用Qwen2VLForConditionalGeneration来加载``model = Qwen2VLForConditionalGeneration.from_pretrained("./Qwen/Qwen2-VL-2B-Instruct/", device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True,)``model.enable_input_require_grads()  # 开启梯度检查点时,要执行该方法

模型大小为 4.5GB,下载模型大概需要 5 分钟。

‍ 集成SwanLab

SwanLab 是一个开源的模型训练记录工具,常被称为"中国版 Weights\&Biases + Tensorboard"。SwanLab面向AI研究者,提供了训练可视化、自动日志记录、超参数记录、实验对比、多人协同等功能。在SwanLab上,研究者能基于直观的可视化图表发现训练问题,对比多个实验找到研究灵感,并通过在线链接的分享与基于组织的多人协同训练,打破团队沟通的壁垒。

SwanLab与Transformers已经做好了集成,用法是在Trainer的callbacks参数中添加SwanLabCallback实例,就可以自动记录超参数和训练指标,简化代码如下:

from swanlab.integration.transformers import SwanLabCallback``from transformers import Trainer``   ``swanlab_callback = SwanLabCallback()``   ``trainer = Trainer(`    `...`    `callbacks=[swanlab_callback],``)

首次使用SwanLab,需要先在官网注册一个账号,然后在用户设置页面复制你的API Key,然后在训练开始提示登录时粘贴即可,后续无需再次登录:

更多用法可参考快速开始、Transformers集成。

开始微调(完整代码)

查看可视化训练过程:https://swanlab.cn/@ZeyiLin/Qwen2-VL-ft-latexocr/runs/1glks73k6u5gw98ovzwev/chart

本节代码做了以下几件事:

1. 下载并加载Qwen2-VL-2B-Instruct模型

2. 加载数据集,取前996条数据参与训练,4条数据进行主观评测

3. 配置Lora,参数为r=64, lora_alpha=16, lora_dropout=0.05

4. 使用SwanLab记录训练过程,包括超参数、指标和最终的模型输出结果

5. 训练2个epoch

开始执行代码时的目录结构应该是:

|———— train.py``|———— data2csv.py``|———— csv2json.py``|———— latex_ocr_train.csv``|———— latex_ocr_train.json``|———— latex_ocr_val.json

完整代码如下

train.py:

import torch``from datasets import Dataset``from modelscope import snapshot_download, AutoTokenizer``from swanlab.integration.transformers import SwanLabCallback``from qwen_vl_utils import process_vision_info``from peft import LoraConfig, TaskType, get_peft_model, PeftModel``from transformers import (`    `TrainingArguments,`    `Trainer,`    `DataCollatorForSeq2Seq,`    `Qwen2VLForConditionalGeneration,`    `AutoProcessor,``)``import swanlab``import json``import os``prompt = "你是一个LaText OCR助手,目标是读取用户输入的照片,转换成LaTex公式。"``model_id = "Qwen/Qwen2-VL-2B-Instruct"``local_model_path = "./Qwen/Qwen2-VL-2B-Instruct"``train_dataset_json_path = "latex_ocr_train.json"``val_dataset_json_path = "latex_ocr_val.json"``output_dir = "./output/Qwen2-VL-2B-LatexOCR"``MAX_LENGTH = 8192``def process_func(example):`    `"""`    `将数据集进行预处理`    `"""`    `input_ids, attention_mask, labels = [], [], []`    `conversation = example["conversations"]`    `image_file_path = conversation[0]["value"]`    `output_content = conversation[1]["value"]`    `messages = [`        `{`            `"role": "user",`            `"content": [`                `{`                    `"type": "image",`                    `"image": f"{image_file_path}",`                    `"resized_height": 500,`                    `"resized_width": 100,`                `},`                `{"type": "text", "text": prompt},`            `],`        `}`    `]`    `text = processor.apply_chat_template(`        `messages, tokenize=False, add_generation_prompt=True`    `)  # 获取文本`    `image_inputs, video_inputs = process_vision_info(messages)  # 获取数据数据(预处理过)`    `inputs = processor(`        `text=[text],`        `images=image_inputs,`        `videos=video_inputs,`        `padding=True,`        `return_tensors="pt",`    `)`    `inputs = {key: value.tolist() for key, value in inputs.items()} #tensor -> list,为了方便拼接`    `instruction = inputs`    `response = tokenizer(f"{output_content}", add_special_tokens=False)`    `input_ids = (`            `instruction["input_ids"][0] + response["input_ids"] + [tokenizer.pad_token_id]`    `)`    `attention_mask = instruction["attention_mask"][0] + response["attention_mask"] + [1]`    `labels = (`            `[-100] * len(instruction["input_ids"][0])`            `+ response["input_ids"]`            `+ [tokenizer.pad_token_id]`    `)`    `if len(input_ids) > MAX_LENGTH:  # 做一个截断`        `input_ids = input_ids[:MAX_LENGTH]`        `attention_mask = attention_mask[:MAX_LENGTH]`        `labels = labels[:MAX_LENGTH]`    `input_ids = torch.tensor(input_ids)`    `attention_mask = torch.tensor(attention_mask)`    `labels = torch.tensor(labels)`    `inputs['pixel_values'] = torch.tensor(inputs['pixel_values'])`    `inputs['image_grid_thw'] = torch.tensor(inputs['image_grid_thw']).squeeze(0)  #由(1,h,w)变换为(h,w)`    `return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels,`            `"pixel_values": inputs['pixel_values'], "image_grid_thw": inputs['image_grid_thw']}``def predict(messages, model):`    `# 准备推理`    `text = processor.apply_chat_template(`        `messages, tokenize=False, add_generation_prompt=True`    `)`    `image_inputs, video_inputs = process_vision_info(messages)`    `inputs = processor(`        `text=[text],`        `images=image_inputs,`        `videos=video_inputs,`        `padding=True,`        `return_tensors="pt",`    `)`    `inputs = inputs.to("cuda")`    `# 生成输出`    `generated_ids = model.generate(**inputs, max_new_tokens=MAX_LENGTH)`    `generated_ids_trimmed = [`        `out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)`    `]`    `output_text = processor.batch_decode(`        `generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False`    `)`    `return output_text[0]``# 在modelscope上下载Qwen2-VL模型到本地目录下``model_dir = snapshot_download(model_id, cache_dir="./", revision="master")``# 使用Transformers加载模型权重``tokenizer = AutoTokenizer.from_pretrained(local_model_path, use_fast=False, trust_remote_code=True)``processor = AutoProcessor.from_pretrained(local_model_path)``origin_model = Qwen2VLForConditionalGeneration.from_pretrained(local_model_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True,)``origin_model.enable_input_require_grads()  # 开启梯度检查点时,要执行该方法``# 处理数据集:读取json文件``train_ds = Dataset.from_json(train_dataset_json_path)``train_dataset = train_ds.map(process_func)``# 配置LoRA``config = LoraConfig(`    `task_type=TaskType.CAUSAL_LM,`    `target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],`    `inference_mode=False,  # 训练模式`    `r=64,  # Lora 秩`    `lora_alpha=16,  # Lora alaph,具体作用参见 Lora 原理`    `lora_dropout=0.05,  # Dropout 比例`    `bias="none",``)``# 获取LoRA模型``train_peft_model = get_peft_model(origin_model, config)``# 配置训练参数``args = TrainingArguments(`    `output_dir=output_dir,`    `per_device_train_batch_size=4,`    `gradient_accumulation_steps=4,`    `logging_steps=10,`    `logging_first_step=10,`    `num_train_epochs=2,`    `save_steps=100,`    `learning_rate=1e-4,`    `save_on_each_node=True,`    `gradient_checkpointing=True,`    `report_to="none",``)``# 设置SwanLab回调``swanlab_callback = SwanLabCallback(`    `project="Qwen2-VL-ft-latexocr",`    `experiment_name="7B-1kdata",`    `config={`        `"model": "https://modelscope.cn/models/Qwen/Qwen2-VL-7B-Instruct",`        `"dataset": "https://modelscope.cn/datasets/AI-ModelScope/LaTeX_OCR/summary",`        `# "github": "https://github.com/datawhalechina/self-llm",`        `"model_id": model_id,`        `"train_dataset_json_path": train_dataset_json_path,`        `"val_dataset_json_path": val_dataset_json_path,`        `"output_dir": output_dir,`        `"prompt": prompt,`        `"train_data_number": len(train_ds),`        `"token_max_length": MAX_LENGTH,`        `"lora_rank": 64,`        `"lora_alpha": 16,`        `"lora_dropout": 0.1,`    `},``)``# 配置Trainer``trainer = Trainer(`    `model=train_peft_model,`    `args=args,`    `train_dataset=train_dataset,`    `data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),`    `callbacks=[swanlab_callback],``)``# 开启模型训练``trainer.train()``# ====================测试===================``# 配置测试参数``val_config = LoraConfig(`    `task_type=TaskType.CAUSAL_LM,`    `target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],`    `inference_mode=True,  # 训练模式`    `r=64,  # Lora 秩`    `lora_alpha=16,  # Lora alaph,具体作用参见 Lora 原理`    `lora_dropout=0.05,  # Dropout 比例`    `bias="none",``)``# 获取测试模型,从output_dir中获取最新的checkpoint``load_model_path = f"{output_dir}/checkpoint-{max([int(d.split('-')[-1]) for d in os.listdir(output_dir) if d.startswith('checkpoint-')])}"``print(f"load_model_path: {load_model_path}")``val_peft_model = PeftModel.from_pretrained(origin_model, model_id=load_model_path, config=val_config)``# 读取测试数据``with open(val_dataset_json_path, "r") as f:`    `test_dataset = json.load(f)``test_image_list = []``for item in test_dataset:`    `image_file_path = item["conversations"][0]["value"]`    `label = item["conversations"][1]["value"]`    `messages = [{`        `"role": "user",`       `"content": [`            `{`            `"type": "image",`           `"image": image_file_path,`            `"resized_height": 100,`            `"resized_width": 500,`             `},`            `{`            `"type": "text",`            `"text": prompt,`            `}`        `]}]`    `response = predict(messages, val_peft_model)`    `print(f"predict:{response}")`    `print(f"gt:{label}\n")`    `test_image_list.append(swanlab.Image(image_file_path, caption=response))``swanlab.log({"Prediction": test_image_list})``# 在Jupyter Notebook中运行时要停止SwanLab记录,需要调用swanlab.finish()``swanlab.finish()

看到下面的进度条即代表训练开始:

训练结果演示

详细训练过程请看这里:https://swanlab.cn/@ZeyiLin/Qwen2-VL-ft-latexocr/runs/1glks73k6u5gw98ovzwev/chart

从SwanLab图表中我们可以看到,学习率的下降策略是线性下降,loss随epoch呈现下降趋势,同时grad_norm也呈现下降趋势。这种形态反映了模型的训练效果是符合预期的。

在Prediction图表中记录着模型最终的输出结果,可以看到模型在回答的风格已经是标准的LaTex语法。

对这四个结果进行验证,跟输入图像完成一致。

那么与没有微调的模型进行效果对比,我们选择997.jpg:

没有微调:(10,10),(989,989)``微调后:\mathrm { t r i e s } \left( \vec { \Phi } _ { A } ^ { ( 3 ) } \right) = ( g h _ { 1 } \left( \Phi ^ { A } \right) + 1 , g h _ { 2 } \left( \Phi ^ { A } \right) + 1 , g h _ { 3 } \left( \Phi ^ { A } \right) )

可以看到没有微调的模型,对于这张图片的输出明显是错误的;

而微调后的模型,有着非常完美表现:

推理LoRA微调后的模型

加载lora微调后的模型,并进行推理:

from transformers import Qwen2VLForConditionalGeneration, AutoProcessor``from qwen_vl_utils import process_vision_info``from peft import PeftModel, LoraConfig, TaskType``   ``prompt = "你是一个LaText OCR助手,目标是读取用户输入的照片,转换成LaTex公式。"``local_model_path = "./Qwen/Qwen2-VL-2B-Instruct"``lora_model_path = "./output/Qwen2-VL-2B-LatexOCR/checkpoint-124"``test_image_path = "./LaTeX_OCR/997.jpg"``   ``config = LoraConfig(`    `task_type=TaskType.CAUSAL_LM,`    `target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],`    `inference_mode=True,`    `r=64,  # Lora 秩`    `lora_alpha=16,  # Lora alaph,具体作用参见 Lora 原理`    `lora_dropout=0.05,  # Dropout 比例`    `bias="none",``)``   ``# default: Load the model on the available device(s)``model = Qwen2VLForConditionalGeneration.from_pretrained(`    `local_model_path, torch_dtype="auto", device_map="auto"``)``   ``model = PeftModel.from_pretrained(model, model_id=f"{lora_model_path}", config=config)``processor = AutoProcessor.from_pretrained(local_model_path)``   ``messages = [`    `{`        `"role": "user",`        `"content": [`            `{`                `"type": "image",`                `"image": test_image_path,`                `"resized_height": 100,`                `"resized_width": 500,`            `},`            `{"type": "text", "text": f"{prompt}"},`        `],`    `}``]``   ``# Preparation for inference``text = processor.apply_chat_template(`    `messages, tokenize=False, add_generation_prompt=True``)``image_inputs, video_inputs = process_vision_info(messages)``inputs = processor(`    `text=[text],`    `images=image_inputs,`    `videos=video_inputs,`    `padding=True,`    `return_tensors="pt",``)``inputs = inputs.to("cuda")``   ``# Inference: Generation of the output``generated_ids = model.generate(**inputs, max_new_tokens=8192)``generated_ids_trimmed = [`    `out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)``]``output_text = processor.batch_decode(`    `generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False``)``   ``print(output_text[0])

补充

详细硬件配置和参数说明

使用4张A100 40GB显卡(总显存占用大约),batch size为4,gradient accumulation steps为4,训练2个epoch的用时为8分钟51秒。

注意

  • 在微调脚本中,val_peft_model加载的是一共固定的checkpoint文件,如果你添加了数据或超参数,请根据实际情况修改checkpoint文件路径。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### 如何使用 `llama-factory` 对 Qwen2-vl 进行微调 对于希望利用 `llama-factory` 工具来对特定于视觉-语言模型如 Qwen2-vl 进行微调的情况,可以遵循如下方法: #### 准备环境与资源 确保所有必要的依赖项已经通过命令 `pip install -r requirements.txt` 安装完毕[^1]。这一步骤至关重要,因为缺少任何依赖可能会导致后续操作失败。 #### 获取并准备数据集 针对想要训练的任务收集适当的数据集非常重要。考虑到 Qwen2-vl 是一种图像到文本类型的模型,因此应当准备好相应的图文配对数据用于监督学习过程中的调整优化。 #### 配置 API 密钥及其他设置 由于某些模型特别是像 qwen-vl-max 可能会涉及到额外的身份验证需求,在开始之前确认已获取最新的 API 访问凭证,并按照官方文档指示完成配置工作[^3]。 #### 使用 `llama-factory` 假设已经有了上述准备工作,则可以通过 `llama-factory` 提供的功能来进行具体的微调流程。虽然具体实现细节取决于该工具本身的特性以及所使用的版本号等因素,但通常情况下涉及以下几个方面的工作: - **加载预训练模型**:从指定路径读取未经修改的基础架构作为起点。 - **定义任务目标**:明确告知算法预期的学习方向,比如提高图片描述准确性等。 - **执行实际的参数更新逻辑**:依据选定策略迭代改进权重直至满足收敛条件为止 下面给出一段简化版 Python 代码片段展示这一概念: ```python from llama_factory import FineTuner, ModelLoader # 加载基础模型实例 model_loader = ModelLoader(model_name="Qwen2-vl") # 初始化微调器对象 fine_tuner = FineTuner( model=model_loader.load(), dataset_path="./data/image_caption_pairs", ) # 开始微调过程 fine_tuner.fine_tune(epochs=5, batch_size=8) ``` 此段脚本仅作示意用途;真实场景下还需考虑更多因素如超参调节、性能评估机制构建等等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值