GraphRAG(Graph-based Retrieval-Augmented Generation)是检索增强生成(RAG)技术的升级版本,通过将知识图谱(Knowledge Graph)与大型语言模型(LLM)结合,解决了传统RAG在处理复杂查询、多跳推理和跨文档语义关联上的局限。其核心目标是通过结构化的知识图谱表示,捕捉数据中实体、关系及全局语义,从而提升LLM对私有或未训练数据的理解与生成能力。
一、GraphRAG
GraphRAG(Graph-based Retrieval-Augmented Generation)是什么?GraphRAG是一种结合知识图谱与检索增强生成(RAG) 的先进技术,旨在通过结构化知识增强大型语言模型(LLM)的推理能力,解决传统RAG在复杂查询和多跳推理中的局限性。
-
复杂查询:利用社区聚类(如Leiden算法)生成分层摘要,支持跨文档主题分析(如“近五年AI研究趋势”),实现全局语义理解,解决复杂查询。
-
多跳推理:通过图谱路径回答需多次关联的问题(如“A事件如何间接导致C结果”。
案例1:复杂查询(社区聚类 + 跨文档主题分析)
将海量AI文献数据划分为高内聚、低耦合的社区,每个社区代表一个研究主题。在社区聚类基础上,分析不同主题间的关联与演化趋势。
-
输入:近五年AI领域文献数据。
-
构建文献网络:以文献为节点,引用关系为边,构建加权图。
-
社区聚类:使用Leiden聚类算法,输出分层社区结构。
-
-
第一层:基础技术(机器学习、深度学习)
-
第二层:应用领域(自然语言处理、计算机视觉)
-
第三层:细分方向(生成式AI、多模态学习)
-
-
生成分层摘要:
-
对每个社区提取高频关键词、主题词,生成社区级摘要。
-
聚合社区摘要,形成全局分层摘要。
-
-
主题关联分析:计算社区间主题相似度(如余弦相似度),构建主题关联图。
-
趋势预测:基于时间序列分析,识别主题的兴起、衰落与融合。
-
输出:“近五年AI研究趋势”报告
-
2020-2021:深度学习模型优化(如Transformer改进)
-
2022-2023:大语言模型(如GPT系列)爆发
-
2024:多模态AI与具身智能(Embodied AI)兴起
-
案例2:多跳推理(图谱路径分析)
通过知识图谱路径,回答“A事件如何间接导致C结果”的复杂问题。
-
问题:“A事件(2019年Transformer架构提出)如何间接导致C结果(2023年ChatGPT发布)?”
-
构建知识图谱:
-
节点:事件、技术、领域、机构等。
-
边:因果关系、引用关系、合作关系等。
-
-
图谱路径分析:
-
A事件→ B事件(2020年Google发布BERT模型,验证Transformer有效性)。
-
-
-
B事件→ C事件(2022年OpenAI基于Transformer训练GPT-3,2023年发布ChatGPT)。
-
-
解释生成:将路径转化为自然语言描述,例如:Transformer架构的提出(A)推动了预训练语言模型的发展(B),最终催生了ChatGPT(C)。
二、知识图谱
如何进行知识图谱(Knowledge Graph)的构建?知识图谱构建的核心是将非结构化数据转化为语义网络,通过实体识别、关系抽取和图谱融合,最终形成可查询、可推理的知识图谱。这一过程需要结合NLP技术、图数据库和领域知识,适用于智能问答、企业决策支持等场景。
一. 知识图谱构建核心:将非结构化文本转化为结构化知识网络
知识图谱构建的核心任务是将海量非结构化文本数据(如新闻、文献、网页内容等)转化为结构化的知识图谱。在这一过程中,节点代表实体(如人物、地点、事件、概念等),边则表示实体之间的语义关系(如“糖尿病→胰岛素→副作用”)。通过这种结构化表示,知识图谱能够清晰展现实体间的关联,为后续的语义推理、信息检索和智能问答提供支持。
二. 知识图谱构建过程:实体识别、关系抽取和图谱融合
- 实体识别:从文本中识别出关键实体(如“糖尿病”“胰岛素”“副作用”),并将其作为知识图谱的节点。
示例:从“糖尿病患者使用胰岛素可能引发低血糖”中抽取实体“糖尿病”“胰岛素”“低血糖”。
- 关系抽取:确定实体之间的语义关系(如“治疗”“引发”“属于”等),并将其作为边连接相关节点。
示例:根据上述文本,构建关系“糖尿病→治疗→胰岛素”“胰岛素→引发→低血糖”。
- 图谱融合:合并来自不同文本的重复实体或关系,确保图谱的一致性。
示例:若另一文本提到“胰岛素的副作用包括低血糖”,则将其与现有关系融合,形成更完整的图谱。
三、知识图谱典型案例:构建糖尿病知识图谱
-
数据来源:医学文献、百科词条、患者论坛。
-
实体:糖尿病、胰岛素、低血糖、血糖监测、饮食控制。
-
关系:糖尿病→治疗→胰岛素,胰岛素→引发→低血糖,糖尿病→管理→血糖监测。
通过这种结构化表示,知识图谱不仅能够回答“糖尿病的常见治疗方法是什么”这类直接问题,还能支持复杂推理(如“哪些因素可能影响糖尿病患者的血糖水平?”),从而提升智能系统的语义理解能力。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓