YOLOv8独家改进:注意力机制改进 | 聚合注意力增强版AggregatedAttention,效果秒杀CBAM等经典注意力| CVPR2024 TransXNet

116 篇文章 116 订阅 ¥259.90 ¥399.90
105 篇文章 354 订阅 ¥129.90 ¥299.90
76 篇文章 99 订阅 ¥259.90 ¥399.90
本文介绍了如何将TransXNet的聚合注意力AggregatedAttention应用于YOLOv8,通过结合C2f,提高了目标检测的性能。详细步骤包括在YOLOv8框架中新建和修改文件,以及解决报错问题。文章还提供了源码链接和答疑群信息。
摘要由CSDN通过智能技术生成
评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值