YOLOv8目标检测创新改进与实战案例专栏
专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLOv8基础解析+创新改进+实战案例
介绍
摘要
卷积神经网络(CNNs)通过收集语义子特征的层次化和不同部分来生成复杂对象的特征表示。这些子特征通常可以在每层特征向量中以分组形式分布,代表各种语义实体 [43, 32]。然而,这些子特征的激活往往受到相似模式和噪声背景的空间影响,导致错误的定位和识别。我们提出了一种空间分组增强(SGE)模块,通过为每个语义组中的每个空间位置生成注意力因子来调整每个子特征的重要性,从而使每个单独的组能够自主增强其学习到的表达并抑制可能的噪声。注意力因子仅由每个组内全局和局部特征描述符之间的相似性引导,因此SGE模块的设计非常轻量化,几乎没有额外的参数和计算。尽管只使用类别监督进行训练,SGE组件在突出显示多个具有各种高阶语义的活跃区域方面非常有效(例如狗的眼睛、鼻子等)。当与流行的CNN主干网络集成时,SGE可以显著提升图像识别任务的性能。具体来说,在基于ResNet50主干的情况下,SGE在ImageNet基准测试中实现了1.2%的Top-1准确率提升,在COCO基准测试中在多种检测器(Faster/Mask/Cascade RCNN和RetinaNet)上实现了1.0至2.0%的AP增益。代码和预训练模型可在 https://github.com/implus/PytorchInsight 获取。
文章链接
论文地址:论文地址
代码地址:代码地址
基本原理
Spatial Group-wise Enhance (SGE)是一种用于改善卷积神经网络中语义特征学习的模块。
-
SGE模块简介:
- SGE模块旨在通过调整每个子特征的重要性来增强卷积神经网络中的语义特征学习。
- 该模块通过全局和局部特征描述符之间的相似性来引导注意力因子,使每个组能够自主增强其学习表达并抑制可能的噪声。
-
技术原理