YOLOv9改进策略 :图像去噪 |一种新颖的双分支残差注意,助力低光照、红外小目标检测 | 2024年最新发表(全网独家首发)

本文介绍了YOLOv9的改进策略,特别是引入了双分支残差注意网络(DRANet),包括残差注意力模块(RAB)和混合型扩张型残差注意力模块(HDRAB),以提升在低光照、红外小目标检测中的性能。文章详细阐述了DRANet的结构和优势,并讨论了如何将其整合进YOLOv9框架。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  

  💡💡💡解决什么问题:许多网络不能很好地去除图像采集或传输过程中产生的真实噪声(即空间变异噪声),这严重阻碍了它们在实际图像去噪任务中的应用。

 💡💡💡创新点:提出了一种新的双分支残差注意网络用于图像去噪,它具有广泛的模型架构和注意引导特征学习的优点。该模型包含两个不同的并行分支,可以捕获互补特征,增强模型的学习能力。我们分别设计了一种新的残差注意力(RAB)和一种新的混合型扩张型残差注意力(HDRAB)

 💡💡💡如何跟YOLOv9结合:RAB和HDRAB引入到backbone

 💡💡💡本人在低光照、红外小目标数据集涨点惊喜

 改进1结构图如下:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值