YOLOv10涨点改进:block优化 | SEAM提升小目标遮挡物性能提升

本文针对遮挡物检测的挑战,提出了SEAM(Separated and Enhancement Attention Module),通过引入排斥损失和注意力机制增强被遮挡目标的响应。SEAM模块被集成到YOLOv10中,实现代码位于ultralytics/nn/block/SEAM.py。通过修改tasks.py和配置文件yolov10n-SEAM.yaml,将SEAM加入到YOLOv10网络中,提升小目标检测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💡💡💡问题点:本文尝试解决待测目标相互遮挡带来的检测困难提出了一个名为 SEAM 的注意力模块并引入了排斥损失来解决它,引入了分离和增强注意力模块来增强Neck层输出部分后被遮挡人脸的响应能力。

改进结构图1

 《YOLOv10魔术师专栏》将从以下各个方向进行创新:

原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化 【小目标性能提升】前沿论文分享】【训练实战篇】

订阅者通过添

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值