YOLO11-pose关键点检测:训练实战篇 | 自己数据集从labelme标注到生成yolo格式的关键点数据以及训练教程

💡💡💡本文解决什么问题:教会你如何用自己的数据集转换成对应格式的数据集以及如何训练YOLO11-pose关键点检测

 《YOLOv11魔术师专栏》将从以下各个方向进行创新:

链接:

### 将LabelMe标注文件转换为YOLO格式关键点数据 #### 转换过程概述 为了将LabelMe标注文件转换成适用于YOLO模型训练关键点数据,需要遵循特定的格式要求。YOLO对于关键点的支持主要体现在一些扩展版本上,比如YOLOv7-Pose等。标准的YOLO标签文件只包含边界框信息,但对于支持关键点的任务,除了上述提到的信息外还需要额外记录关键点的位置。 #### 数据结构对比 - **LabelMe JSON**: 存储了丰富的元数据以及多边形形状、矩形等多种类型的标注方式。 - **YOLO TXT (含关键点)**: 需要按照`class x_center y_center width height keypoints...`的形式保存,其中keypoints部分取决于具体实现,一般会按顺序给出一系列(x,y,visibility)三元组来表示各个关键点及其可见状态[^1]。 #### 实现方法 可以编写Python脚本来完成这一转换工作。下面提供了一个简单的例子: ```python import json from pathlib import Path def convert_labelme_to_yolo(labelme_json_path, output_dir): with open(labelme_json_path, 'r') as f: data = json.load(f) image_width = data['imageWidth'] image_height = data['imageHeight'] shapes = data.get('shapes', []) lines = [] for shape in shapes: label = shape['label'] # 假设这里的label可以直接映射到类别的索引 points = shape['points'] # 计算边界框参数 min_x = min([p[0] for p in points]) max_x = max([p[0] for p in points]) min_y = min([p[1] for p in points]) max_y = max([p[1] for p in points]) box_w = (max_x - min_x) / image_width box_h = (max_y - min_y) / image_height center_x = ((min_x + max_x) / 2) / image_width center_y = ((min_y + max_y) / 2) / image_height line_parts = [ str(int(label)), # 类别ID format(center_x, '.6f'), format(center_y, '.6f'), format(box_w, '.6f'), format(box_h, '.6f') ] # 添加关键点信息(假设每个shape有固定数量的关键点) keypoint_count = len(points) visibility_flag = 2 # 默认设置为可视(2),不可视可设为0或1依据实际情况调整 for i in range(keypoint_count): kp_x = float(points[i][0]) / image_width kp_y = float(points[i][1]) / image_height line_parts.extend([ format(kp_x, '.6f'), format(kp_y, '.6f'), str(visibility_flag)]) lines.append(' '.join(line_parts)) txt_file_name = Path(data["imagePath"]).stem + ".txt" out_txt_path = Path(output_dir).joinpath(txt_file_name) with open(out_txt_path, "w") as file: file.write('\n'.join(lines)) if __name__ == "__main__": input_json = "/path/to/your/input.json" # 替换成实际路径 output_folder = "/path/to/output/folder/" # 输出目录也需指定 convert_labelme_to_yolo(input_json, output_folder) ``` 此代码片段展示了如何读取单个LabelMe JSON文件并将其转化为YOLO格式文本文件的过程,其中包括处理边界框和简单地提取多边形顶点作为关键点的方式。需要注意的是,在真实场景下可能还需考虑更多细节,如不同姿态下的关键点定义差异等问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值