一元函数微分学

文章目录

    • 导数
    • 微分

今日格言:不下水、不呛水是学不会游泳的。

导数

瞬时变化率~导数
拉格朗日写法:
f ′ ( x ) f'(x) f(x)
莱布尼茨写法:
d f d t \frac{df}{dt} dtdf
可以将导数定义式写为:
f ′ ( x ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x) = \lim_{x \to x_0} \frac{f(x)-f(x_0)} {x-x_0} f(x)=xx0limxx0f(x)f(x0)
本质上来讲,导数的定义就是一个极限问题。
函数在一点可导则一定在这一点连续,证明如下:
在这里插入图片描述
牛顿研究微积分的背景是物理,而莱布尼茨研究微积分的背景是几何学,应该找到完成一件事情的可行的科学指导和客观规律。
在这里插入图片描述
在这里插入图片描述
迪利克雷函数如下:
D ( x ) = { 1 x ∈ Q 0 x ∉ Q D(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases} D(x)={10xQx/Q
迪利克雷函数是数学分析中一个经典的 ​处处不连续、黎曼不可积 的函数。
例题1.以下命题错误的是:(D)
A. 若f(x)是可导的偶函数,则f’(x)是奇函数。
B. 若f(x)是可导的奇函数,则f’(x)是偶函数。
C. 若f(x)是可导的周期为T的周期函数,则f’(x)也是以T为周期的周期函数。
D. 若f(x)是可导的有界函数,则f’(x)是有界函数。
证明过程如下:
在这里插入图片描述
在这里插入图片描述
习题2
在这里插入图片描述
习题3是一类题,看似很麻烦实则是考察导数的定义即左右导数是否相等。
在这里插入图片描述
接下来是由导数求切线方程和法线方程:
曲线 y = f ( x ) 在 点 ( x 0 , y 0 ) 处 的 切 线 方 程 为 y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y=f(x)在点(x_0,y_0)处的切线方程为y-y_0 = f'(x_0)(x-x_0) y=f(x)(x0,y0)线yy0=f(x0)(xx0)
法 线 方 程 为 : y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 )   ( f ′ ( x 0 ) ≠ 0   ) 法线方程为:y-y_0 = -\frac {1} {f'(x_0)}(x-x_0) \ ( f'(x_0)≠0 \ ) 线yy0=f(x0)1(xx0) (f(x0)=0 )
在这里插入图片描述
最后就是想尽一切办法去凑导数的定义式:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

微分

概念:设函数 y = f ( x ) 在 点 x 0 的 某 邻 域 内 有 定 义 , 且 x 0 + Δ x y=f(x)在点x_0的某邻域内有定义,且x_0+Δx y=f(x)x0x0Δx在该邻域内,对于函数增量
Δ y = f ( x 0 + Δ x ) − f ( x 0 ) , Δy = f(x_0+Δx)-f(x_0), Δy=f(x0Δx)f(x0),
若存在与 Δ x 无 关 的 常 数 A , 使 得 Δ y = A Δ x + o ( Δ x ) , Δx无关的常数A,使得Δy=AΔx+o(Δx), ΔxA使Δy=AΔxo(Δx),
其中 o ( Δ x ) o(Δx) o(Δx)是在 Δ x → 0 Δx \to 0 Δx0时比Δx更高阶的无穷小,则称 f ( x ) 在 点 x 0 f(x)在点x_0 f(x)x0处可微,并把增量的主要部分 A Δ x AΔx AΔx称为线性主部,也叫作 f ( x ) 在 点 x 0 f(x)在点x_0 f(x)x0处的微分,记 d y ∣ x = x 0 = A Δ x \left. dy \right|_{x=x_0} =AΔx dyx=x0=AΔx d y ∣ x = x 0 = f ′ ( x 0 ) d x \left. dy \right|_{x=x_0} =f'(x_0)dx dyx=x0=f(x0)dx
可微的几何意义:若 f ( x ) 在 点 x 0 处 可 微 , 则 在 点 ( x 0 , y 0 ) f(x)在点x_0处可微,则在点(x_0,y_0) f(x)x0(x0,y0)附近可以用切线段近似代替曲线段,这是可微的几何意义。也就是用线性代替非线性。
在一元函数微分学中,可导与可微互为充分必要条件。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值