文章目录
- 导数
- 微分
今日格言:不下水、不呛水是学不会游泳的。
导数
瞬时变化率~导数
拉格朗日写法:
f
′
(
x
)
f'(x)
f′(x)
莱布尼茨写法:
d
f
d
t
\frac{df}{dt}
dtdf
可以将导数定义式写为:
f
′
(
x
)
=
lim
x
→
x
0
f
(
x
)
−
f
(
x
0
)
x
−
x
0
f'(x) = \lim_{x \to x_0} \frac{f(x)-f(x_0)} {x-x_0}
f′(x)=x→x0limx−x0f(x)−f(x0)
本质上来讲,导数的定义就是一个极限问题。
函数在一点可导则一定在这一点连续,证明如下:
牛顿研究微积分的背景是物理,而莱布尼茨研究微积分的背景是几何学,应该找到完成一件事情的可行的科学指导和客观规律。
迪利克雷函数如下:
D
(
x
)
=
{
1
x
∈
Q
0
x
∉
Q
D(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}
D(x)={10x∈Qx∈/Q
迪利克雷函数是数学分析中一个经典的 处处不连续、黎曼不可积 的函数。
例题1.以下命题错误的是:(D)
A. 若f(x)是可导的偶函数,则f’(x)是奇函数。
B. 若f(x)是可导的奇函数,则f’(x)是偶函数。
C. 若f(x)是可导的周期为T的周期函数,则f’(x)也是以T为周期的周期函数。
D. 若f(x)是可导的有界函数,则f’(x)是有界函数。
证明过程如下:
习题2
习题3是一类题,看似很麻烦实则是考察导数的定义即左右导数是否相等。
接下来是由导数求切线方程和法线方程:
曲线
y
=
f
(
x
)
在
点
(
x
0
,
y
0
)
处
的
切
线
方
程
为
y
−
y
0
=
f
′
(
x
0
)
(
x
−
x
0
)
y=f(x)在点(x_0,y_0)处的切线方程为y-y_0 = f'(x_0)(x-x_0)
y=f(x)在点(x0,y0)处的切线方程为y−y0=f′(x0)(x−x0)
法
线
方
程
为
:
y
−
y
0
=
−
1
f
′
(
x
0
)
(
x
−
x
0
)
(
f
′
(
x
0
)
≠
0
)
法线方程为:y-y_0 = -\frac {1} {f'(x_0)}(x-x_0) \ ( f'(x_0)≠0 \ )
法线方程为:y−y0=−f′(x0)1(x−x0) (f′(x0)=0 )
最后就是想尽一切办法去凑导数的定义式:
微分
概念:设函数
y
=
f
(
x
)
在
点
x
0
的
某
邻
域
内
有
定
义
,
且
x
0
+
Δ
x
y=f(x)在点x_0的某邻域内有定义,且x_0+Δx
y=f(x)在点x0的某邻域内有定义,且x0+Δx在该邻域内,对于函数增量
Δ
y
=
f
(
x
0
+
Δ
x
)
−
f
(
x
0
)
,
Δy = f(x_0+Δx)-f(x_0),
Δy=f(x0+Δx)−f(x0),
若存在与
Δ
x
无
关
的
常
数
A
,
使
得
Δ
y
=
A
Δ
x
+
o
(
Δ
x
)
,
Δx无关的常数A,使得Δy=AΔx+o(Δx),
Δx无关的常数A,使得Δy=AΔx+o(Δx),
其中
o
(
Δ
x
)
o(Δx)
o(Δx)是在
Δ
x
→
0
Δx \to 0
Δx→0时比Δx更高阶的无穷小,则称
f
(
x
)
在
点
x
0
f(x)在点x_0
f(x)在点x0处可微,并把增量的主要部分
A
Δ
x
AΔx
AΔx称为线性主部,也叫作
f
(
x
)
在
点
x
0
f(x)在点x_0
f(x)在点x0处的微分,记
d
y
∣
x
=
x
0
=
A
Δ
x
\left. dy \right|_{x=x_0} =AΔx
dy∣x=x0=AΔx或
d
y
∣
x
=
x
0
=
f
′
(
x
0
)
d
x
\left. dy \right|_{x=x_0} =f'(x_0)dx
dy∣x=x0=f′(x0)dx
可微的几何意义:若
f
(
x
)
在
点
x
0
处
可
微
,
则
在
点
(
x
0
,
y
0
)
f(x)在点x_0处可微,则在点(x_0,y_0)
f(x)在点x0处可微,则在点(x0,y0)附近可以用切线段近似代替曲线段,这是可微的几何意义。也就是用线性代替非线性。
在一元函数微分学中,可导与可微互为充分必要条件。