【风电功率预测】【多变量输入单步预测】基于VMD-CNN-GRU的风电功率预测研究(Matlab代码实现)

                  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、模型结构与原理

1. VMD层

2. CNN层

3. GRU层

4. 输出层

三、多变量输入单步预测

四、研究展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于VMD-CNN-GRU的风电功率预测研究

一、研究背景与意义

风电作为清洁、可再生的能源,在全球能源结构中的重要性日益凸显。然而,风电功率的预测一直是一个具有挑战性的任务,因为其受风速、风向、温度、湿度等多种气象因素的影响,且这些因素之间具有复杂的非线性关系。准确预测风电功率对于电力系统的稳定运行、风电并网的优化调度以及风电场的经济效益具有重要意义。基于VMD-CNN-GRU的风电功率预测模型结合了变分模态分解(VMD)、卷积神经网络(CNN)和门控循环单元(GRU)的优势,旨在提高风电功率预测的精度和鲁棒性。

二、模型结构与原理

1. VMD层
  • 功能:将原始风电功率时间序列输入到VMD层,通过VMD算法将信号分解为多个固有模态函数(IMFs)。每个IMF代表信号中的一种独特频率或时间尺度的振动模式,有助于提取原始数据中的有用信息和特征。
  • 优势:VMD通过对模态分量的带宽和中心频率进行约束,确保分解得到的IMFs在频域上有良好的分离性和紧凑性,为后续处理提供高质量的数据基础。
2. CNN层
  • 功能:将VMD层输出的每个IMF作为CNN的输入,通过卷积操作、激活函数和池化操作提取IMFs的局部特征。CNN特别擅长处理具有网格结构的数据,能够有效地提取输入数据的空间层次结构。
  • 优势:CNN层能够生成对预测有用的特征表示,为后续的时间序列分析提供关键信息。
3. GRU层
  • 功能:将CNN层输出的特征向量输入到GRU层,通过GRU的循环连接结构和门控机制捕获时间序列数据中的长期依赖关系。GRU通过更新门和重置门控制信息的流动,特别适用于处理序列数据。
  • 优势:GRU层能够充分利用时间序列数据的特性,提高预测的准确性。
4. 输出层
  • 功能:根据具体任务的需求,输出层可以采用不同的结构。在风电功率预测任务中,输出层通常是一个全连接层,用于输出预测结果。
  • 输出:风电功率的预测值。

三、多变量输入单步预测

在基于VMD-CNN-GRU的风电功率预测研究中,可以采用多变量输入以进一步提高预测精度。这些多变量可能包括风速、风向、温度、湿度、气压等气象数据以及历史风电功率数据等。

  • 数据预处理:对多变量输入数据进行清洗、缺失值处理、归一化等预处理步骤,以确保数据的一致性和可比性。
  • 模型训练:将预处理后的多变量输入数据输入到VMD-CNN-GRU模型中进行训练。模型在训练过程中会自动学习输入变量与风电功率之间的关系,并优化其预测性能。
  • 预测输出:在模型训练完成后,可以使用新的多变量输入数据来预测未来的风电功率。由于模型已经学习到了输入变量与风电功率之间的复杂关系,因此能够输出较为准确的预测结果。

四、研究展望

随着深度学习技术的不断发展和完善,基于VMD-CNN-GRU的风电功率预测模型将具有更广阔的应用前景。未来的研究可以进一步探索模型的优化算法、超参数调整策略以及与其他先进技术的结合应用,以提高模型的预测精度和泛化能力。同时,随着大数据和云计算等技术的普及和应用,风电功率预测将更加注重实时性和准确性,为电力系统的稳定运行和风电并网的优化调度提供更加有力的支持。

📚2 运行结果

部分代码:

% 此函数可以实现多变量多步输入,和多变量单步输入
% 多变量多步输入时,将n_out设置成大于1的多步预测
% 多变量单步输入时,将n_out设置为1,表示预测未来一步。
% # 关于此函数怎么用,下面详细举例介绍:
% # 构造数据,这个函数可以实现单输入单输出,单输入多输出,多输入单输出,和多输入多输出。
% # 举个例子:
% # 假如原始数据为,其中务必使得数据前n-1列都为特征,最后一列为输出
% # [0.74    0.8    0.23 750.75
% # 0.74 0.87 0.15 716.94
% # 0.74 0.87 0.15 712.77
% # 0.74 0.8 0.15 684.86
% # 0.74 0.8 0.15 728.79
% # 0.72 0.87 0.08 742.81
% # 0.71 0.99 0.16 751.3]

% #(多输入多输出为例),假如n_in = 2,n_out=2,scroll_window=1
% # 输入前2行数据的特征,预测未来2个时刻的数据,滑动步长为1。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77 684.86
% # 0.74 0.87 0.15 716.94 0.74 0.87    0.15 712.77  684.86 728.79
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79 742.81】

% # 假如n_in = 2,n_out=1,scroll_window=2
% # 输入前2行数据的特征,预测未来1个时刻的数据,滑动步长为2。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77
% # 0.74 0.87    0.15 712.77  0.74 0.8 0.15 684.86 728.79
% # 0.74 0.8 0.15 728.79 0.72    0.87 0.08 742.81 751.3】


function  res = data_collation(values, n_in, n_out, or_dim, scroll_window, num_samples)
    for i = 1:num_samples
        h1 = values(1+scroll_window*(i-1): scroll_window*(i-1)+n_in,1:or_dim);
        res{i,1}= h1;
        h2 = values(scroll_window*(i-1)+n_in+1 : scroll_window*(i-1)+n_in+n_out,end);
        res{i,2} = h2;
      
    end
 end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.

[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 11
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
MATLAB中使用LSTM模型进行多变量单步预测的步骤如下: 1. 数据准备:将多个变量的时间序列数据整理成适合LSTM模型输入的格式。通常情况下,数据应该是一个二维数组,其中行表示时间步,列表示变量。确保数据集包含足够数量的样本以及适当的标签。 2. 数据预处理:对数据进行标准化或归一化处理,以便在输入到LSTM之前将其缩放到一个合适的范围内。这可以通过MATLAB的标准函数或自定义函数进行实现。 3. 构建LSTM模型:在MATLAB中,可以使用深度学习工具箱来构建LSTM模型。指定模型的架构,例如输入和输出的维度,隐藏层的大小,激活函数等,并使用适当的优化算法进行训练。 4. 模型训练:使用准备好的数据集对构建好的LSTM模型进行训练。通过迭代优化算法来调整模型的权重和偏差,使其能够在训练数据上学习到相关模式和趋势。 5. 模型预测:使用模型对测试数据进行预测。将测试数据输入到训练好的LSTM模型中,通过模型的前向传播计算出预测值。 6. 结果评估:使用合适的评估指标来评估模型的预测性能,例如均方根误差(RMSE)或平均绝对百分比误差(MAPE)。根据评估结果对模型进行调整和改进。 7. 可视化结果:使用MATLAB的绘图工具,将训练和预测结果可视化展示,以便更直观地观察模型在不同变量上的预测效果。 这是一个基本的步骤框架,在实际应用中可能还需要进行更多细节的调整和优化,以使模型更加准确和可靠。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值