基于LSSVM的自行车租赁数量预测研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、数据收集与预处理

三、模型构建

四、模型评估与优化

五、结果分析与应用

六、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于LSSVM(最小二乘支持向量机)的自行车租赁数量预测研究是一个结合了机器学习算法与交通数据分析的复杂任务。以下是对该研究的详细探讨:

一、研究背景与意义

随着城市化进程的加快,交通拥堵和环境污染问题日益严峻。自行车租赁系统作为绿色出行方式的重要组成部分,其租赁数量的预测对于优化资源配置、提高系统运营效率具有重要意义。LSSVM作为一种基于统计学习理论的机器学习算法,具有预测能力强、全局最优化以及收敛速度快等特点,适用于处理复杂的时间序列数据,因此在自行车租赁数量预测中具有广阔的应用前景。

二、数据收集与预处理

  1. 数据来源:研究首先需要收集自行车租赁系统的历史数据,包括租赁时间、租赁地点、天气状况、节假日信息等多维度数据。这些数据可以通过与共享单车运营商合作获取,或者从公开的数据集中获取。

  2. 数据预处理:数据预处理是确保模型预测准确性的关键步骤。主要包括数据清洗(去除重复、错误和异常值)、数据转换(如将分类变量转换为数值型变量)、数据归一化(使不同量纲的数据能够在同一尺度上进行比较)等。

三、模型构建

  1. LSSVM模型介绍:LSSVM是一种基于支持向量机的回归算法,通过求解一个线性方程组来找到最优解,从而避免了传统支持向量机在求解过程中的复杂二次规划问题。LSSVM具有计算速度快、预测精度高等优点。

  2. 特征选择:根据历史数据和预测目标,选择对自行车租赁数量有显著影响的特征变量,如时间(小时、星期几、月份)、天气(温度、湿度、风速、是否下雨)、节假日等。

  3. 模型训练:使用预处理后的数据对LSSVM模型进行训练。在训练过程中,可以通过交叉验证等方法来优化模型参数,如正则化参数、核函数参数等,以提高模型的预测性能。

四、模型评估与优化

  1. 模型评估:使用测试集数据对训练好的LSSVM模型进行评估,评估指标包括均方误差(MSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)等。通过对比不同模型的评估指标,可以评估LSSVM模型在自行车租赁数量预测中的表现。

  2. 模型优化:根据评估结果对模型进行优化。可以通过调整模型参数、引入新的特征变量、使用集成学习等方法来提高模型的预测精度和泛化能力。

五、结果分析与应用

  1. 结果分析:对模型预测结果进行深入分析,探讨不同因素(如时间、天气、节假日等)对自行车租赁数量的影响程度和规律。

  2. 应用前景:基于LSSVM的自行车租赁数量预测结果可以为共享单车运营商提供科学的决策支持,如优化车辆调度、提高系统运营效率、满足用户需求等。同时,该研究结果还可以为城市交通规划和政策制定提供重要参考。

六、结论与展望

基于LSSVM的自行车租赁数量预测研究在理论和实践上都具有重要意义。通过构建高效、准确的预测模型,可以为共享单车系统的优化运营提供有力支持。未来研究可以进一步探索更多影响自行车租赁数量的因素,以及将LSSVM与其他机器学习算法进行集成和比较,以不断提高预测精度和泛化能力。

📚2 运行结果

部分代码:

function [mae,rmse,mape,error]=calc_error(x1,x2)

error=x2-x1;  %计算误差
rmse=sqrt(mean(error.^2));
disp(['1.均方差(MSE):',num2str(mse(x1-x2))])
disp(['2.根均方差(RMSE):',num2str(rmse)])

 mae=mean(abs(error));
disp(['3.平均绝对误差(MAE):',num2str(mae)])

 mape=mean(abs(error)/x1);
 disp(['4.平均相对百分误差(MAPE):',num2str(mape*100),'%'])
Rsq1 = 1 - sum((x1 - x2).^2)/sum((x1 - mean(x2)).^2);
disp(['5.R2:',num2str(Rsq1*100),'%'])
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]李婷婷.城市公共自行车租赁点选址规划研究[D].北京交通大学,2010.DOI:10.7666/d.y1961114.

[2]陆朕.公共自行车租赁点车辆数的预测方法研究[D].南京师范大学,2015.DOI:10.7666/d.Y2857359.

[3]韩军红,魏越,侯礼兴.公共自行车租赁点规模优化[J].山西建筑, 2023, 49(22):57-61.

🌈4 Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值