【风电功率预测】【多变量输入单步预测】基于Transformer的风电功率预测研究(Matlab代码实现)

                                   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于Transformer的风电功率预测研究可以有效利用Transformer模型在处理序列数据方面的优势,特别是在多变量输入单步预测任务中。Transformer模型以其强大的自注意力机制和并行计算能力,能够捕捉长距离依赖关系并处理复杂的时间序列数据。以下是基于Transformer的多变量输入单步风电功率预测研究的关键点:

### 1. **Transformer概述**
   - **自注意力机制**:Transformer模型通过自注意力机制(Self-Attention)来计算输入序列中每个元素对其他元素的注意力,从而捕捉长距离依赖关系。
   - **编码器-解码器架构**:经典的Transformer模型包括编码器和解码器部分,但对于单步预测任务,通常只使用编码器部分(如BERT)或简化为纯自注意力网络。

### 2. **多变量输入**
   - **特征选择**:包括风速、风向、气温、气压等多种变量。Transformer模型可以同时处理多个输入特征,通过嵌入层(Embedding Layer)将这些特征转换为模型可处理的形式。
   - **时间序列处理**:Transformer对时间序列数据的处理方式独特,它通过位置编码(Positional Encoding)来引入序列中的时间信息。

### 3. **单步预测**
   - **定义**:单步预测指的是基于当前时刻的数据,预测下一个时间步的风电功率。这种方法适用于需要快速、实时预测的应用场景。
   - **实施**:将历史数据(多变量时间序列)输入Transformer模型,通过模型的输出层得到下一时间步的风电功率预测值。

### 4. **研究步骤**
   - **数据收集与预处理**:
     - 收集风电场的历史数据,包括风速、风向、气温、气压等多种变量。
     - 对数据进行归一化处理,以适应Transformer模型的输入要求。
   - **特征工程**:
     - 设计合适的输入特征,生成适当的时间窗口数据。
     - 使用位置编码来表示时间序列中的时间信息。
   - **模型设计**:
     - 构建Transformer模型,包括自注意力层、多头注意力机制、前馈网络等。
     - 设计输出层来进行单步预测,将Transformer的输出映射到风电功率预测值。
   - **训练与验证**:
     - 使用训练数据集进行模型训练,优化损失函数(如均方误差)。
     - 使用验证数据集进行模型评估和超参数调优,以提高模型性能。
   - **测试与评估**:
     - 在测试数据集上评估模型性能,分析预测结果与实际值之间的误差,进行模型改进。

### 5. **挑战与改进**
   - **计算复杂度**:Transformer模型的计算复杂度较高,特别是在处理长时间序列时,需要有效的计算资源。
   - **数据需求**:Transformer模型通常需要大量数据来训练,因此需要确保数据的充足性和多样性。
   - **超参数调优**:Transformer模型的超参数(如注意力头数、层数、隐藏层维度等)对模型性能有重要影响,需要进行细致的调优。

### 6. **应用与前景**
   - **风电场优化**:通过准确的风电功率预测,优化风电场的运行策略和电网调度。
   - **实时预测**:利用Transformer的高效计算能力,实现实时或准实时的风电功率预测,提升电网稳定性和风电场的发电效率。

通过这些研究步骤,基于Transformer的多变量输入单步风电功率预测可以在实际应用中提供高效且准确的预测结果,为风电行业的决策支持和电网管理提供有力工具。

📚2 运行结果

部分代码:

% 此函数可以实现多变量多步输入,和多变量单步输入
% 多变量多步输入时,将n_out设置成大于1的多步预测
% 多变量单步输入时,将n_out设置为1,表示预测未来一步。
% # 关于此函数怎么用,下面详细举例介绍:
% # 构造数据,这个函数可以实现单输入单输出,单输入多输出,多输入单输出,和多输入多输出。
% # 举个例子:
% # 假如原始数据为,其中务必使得数据前n-1列都为特征,最后一列为输出
% # [0.74    0.8    0.23 750.75
% # 0.74 0.87 0.15 716.94
% # 0.74 0.87 0.15 712.77
% # 0.74 0.8 0.15 684.86
% # 0.74 0.8 0.15 728.79
% # 0.72 0.87 0.08 742.81
% # 0.71 0.99 0.16 751.3]

% #(多输入多输出为例),假如n_in = 2,n_out=2,scroll_window=1
% # 输入前2行数据的特征,预测未来2个时刻的数据,滑动步长为1。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77 684.86
% # 0.74 0.87 0.15 716.94 0.74 0.87    0.15 712.77  684.86 728.79
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79 742.81】

% # 假如n_in = 2,n_out=1,scroll_window=2
% # 输入前2行数据的特征,预测未来1个时刻的数据,滑动步长为2。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77
% # 0.74 0.87    0.15 712.77  0.74 0.8 0.15 684.86 728.79
% # 0.74 0.8 0.15 728.79 0.72    0.87 0.08 742.81 751.3】


function  res = data_collation(values, n_in, n_out, or_dim, scroll_window, num_samples)
    for i = 1:num_samples
        h1 = values(1+scroll_window*(i-1): scroll_window*(i-1)+n_in,1:or_dim);
        res{i,1}= h1;
        h2 = values(scroll_window*(i-1)+n_in+1 : scroll_window*(i-1)+n_in+n_out,end);
        res{i,2} = h2;
      
    end
 end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.

[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值